

PART 1 - ADDENDUM

1.1 TITLE

.1 This Addendum shall be known as:

Addendum 5
TFM-053-25 – CSF-004-23 Primary Data Centre Replacement

.2 The Date of the Addendum is Friday, January 23, 2026

1.2 PRECEDENCE

.1 This amendment to the bid documents is effective immediately.

.2 This Addendum shall form an integral part of the original bid documents and is to be read in conjunction therewith.

.3 The Addendum shall take precedence over previously issued bid documents with which it may prove to be at variance.

1.3 GENERAL

.1 Not Applicable.

1.4 PURPOSE

.1 The purpose of the Addendum is to inform bidders of the changes, deletions and additions to be added to the bid documents.

1.5 CHANGES TO DRAWINGS

.1 Drawing: S102 - DATA ROOM ROOF PLAN AND UPS WALL SUPPORT PLANS

.1 Replace with new Drawing S102 attached to this addendum.

.2 Drawing: M101 - SITE PLAN – MECHANICAL LAYOUT

.1 Reference Detail 2 – ‘BURIED REFRIGERANT PIPING RACEWAY DETAIL’, revise Note 1 to read as follows:

“1. All below grade refrigerant joints are to be brazed. Mechanical joints are not acceptable.”

.3 Drawing: E401 - ENLARGED FLOOR PLANS – DATA CENTRE

.1 Reference: Detail 1

.1 Updated lighting layout and lighting types.

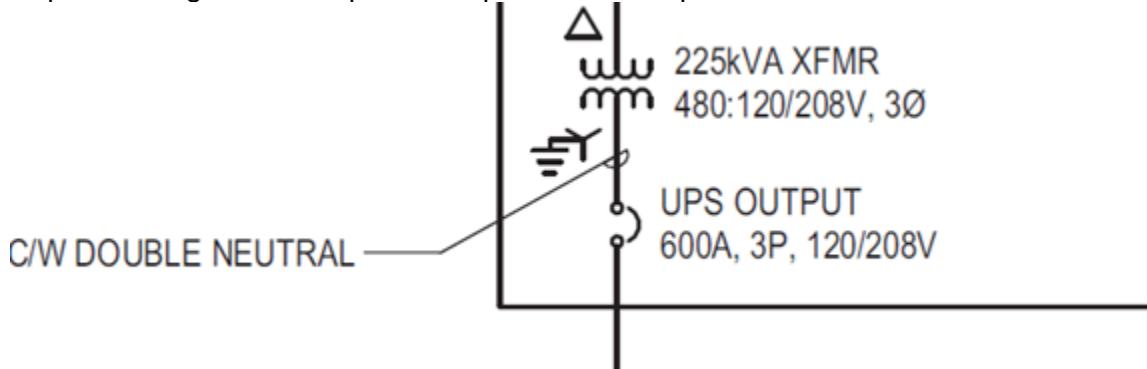
.2 Additional occupancy sensors shown.

- .4 Drawing: E403 - ENLARGED DISTRIBUTION AND ELECTRICAL SERVICES
ROUTING PLANS
 - .1 Provide two (2) inline pull boxes on vertical sections of 600A normal power feeders to ATS-1 and ATS-2 at Level 3 (Rm 3308) and Level 5 (Rm 5306). At each pull box install cable support devices. Devices to be Emerson OZ/Gedney Type S or equivalent.
- .5 Drawing: E505 - ELECTRICAL DETAILS
 - .1 Reference: Detail 4
 - .1 Clarification - Indicates location of single tier of cable tray that was added as part of Addendum No. 4.
- .6 Drawing: E701 - ELECTRICAL SCHEDULES
 - .1 Updated lighting types D1, D2, D3. Linear light fixtures to mount to structural ceiling grid. Light supplied to be compatible with structural ceiling that is supplied. Mounting hardware supplied to be compatible with ceiling grid.
 - .2 Basis of design for structural ceiling is Dynamax Plus as marketed by Armstrong World Industries. The grid comprises of main beams and cross tees which are both sized at 50mm wide x 92mm high. Both main beams and cross tees have continuous 3/8" threaded boss channels for mounting equipment to including light fixtures.

1.6 CHANGES TO SPECIFICATION

- .1 Appendices
 - .1 Add Appendix 6 - Geotechnical Investigation Proposed MUN Core Sciences Building as attached to this addendum.
- .2 Section 01 35 29.06 – Health and Safety Requirements
 - .1 Reference: 1.7 Contractors Safety Representative
 - .1 Revise 1.7.1 as follows:
 - “.1 The contractor shall employ a Contractor’s Safety Representative (CSR), or have tasks completed by alternate staff member who is on site during the execution of the work, who shall have as a minimum successfully completed the following training, and must have current credentials for those that have expiration dates:”
- .3 Section 07 42 00 - Perforated Metal Wall Panels
 - .1 Reference: 2.1 Perforated Architectural Metals
 - .1 Revise 2.1.2.1 as follows:
 - “.1 Machine / laser cut round holes in varying diameter to create perforated image as per precedent shown on Sheet A301.”
 - .2 Revise 2.1.4.1 as follows:
 - “.1 12" o.c. – long legs only. Concealed fasteners accessed through appropriately sized perforations in panel. Refer to Approved Products for basis of design.”

- .4 Section 23 23 00 – Refrigerant Piping
 - .1 Reference: 2.1 Underground Piping
 - .1 Revise Clause 2.1.3 as follows:


“All refrigerant piping installed within underground raceways shall be installed without mechanical joints. All joints shall be brazed.”
- .5 Section 26 36 23 – Automatic Transfer Switches
 - .1 Reference: 2.2 Mechanically Held Transfer Switch
 - .1 Revise Clause 2.2.7 as follows:

“The ATS shall be provided with fully rated switched neutral transfer contacts.”

1.7 QUESTIONS AND RESPONSES

- .1 QUESTION: Will teck be acceptable to use in place of conduit? If teck is to be used are there any special requirements for vertical rated teck cable? See attached spec sheet.
 - .1 ANSWER: TECK cable is not acceptable. All feeders to be RW90/RWU90 in conduit as specified on the drawings. Strain relief devices to be provided on vertical runs as indicated in this addendum.
- .2 QUESTION: Specification “Section 26 36 23 - Automatic Transfer Switches” Part 2.2.7 calls for an overlapping neutral. Please clarify the purpose of this option. Overlapping Neutral is an option only used by one manufacturer. All other manufacturers including Cummins have a “Solid” or “Switchable” neutral. A Switchable Neutral performs the same task as the overlapping Neutral.
 - .1 ANSWER: ATS to be revised to switched neutral.
- .3 QUESTION: Cummins Has provided many ATS's to Health Care facilities, Military installations, and Data Centers across the province and North America. We would like to submit Cummins CBL Automatic Transfer Switch for Approval to quote on this project.
 - .1 ANSWER: Cummins CBL Automatic Transfer Switch has been accepted as an alternate. It is noted that this switch is dimensionally larger than the design basis. Exact layout and configuration of the room to be confirmed by the contractor to ensure all equipment fits within the available space.
- .4 QUESTION: On drawing M101, Note #1 states: "all below grade refrigerant piping to be continuous with no joins." The refrigerant piping sizes that are required for this job are not available in greater than 50' length coils. As it appears, the PVC raceway from surface-to-surface is longer than 50 feet. Will the PVC raceway be relocated to allow for no joins?
 - .1 ANSWER: Brazed joints will be accepted for buried refrigerant piping. Mechanical joints (compression, crimped / press-fit) will not be accepted.

.5 QUESTION: Clarify this point in terms of both UPS's output breaker sizes. Below is a snip it showing the 600amp UPS output breaker in question.

Note 600amps is insufficient for 225kva @ 208v

225kva @ 208v = 625A sizing the breaker @ 80% = 780A

Additionally, this is odd since the downstream Panels (SA/SB) are shown as 600A rated. Can this be clarified please, as the 600A output breaker at 80% will only allow an output of approx. 173kva. Hence can the UPS's be both downsized to 180KVA or should we allow for an 800amp output breaker and hence change the amperage rating on Panels SA & SB.

.1 ANSWER: The breaker sizes and equipment configuration illustrated on the drawing were based on a specific manufacturer. The 600A output breaker must be rated for 100% duty to maximize the bus ratings of the downstream panels SA and SB.

.6 QUESTION: Has a geotechnical report been completed? If so, please provide.

.1 ANSWER: Geotechnical Investigation is attached to this addendum.

.7 QUESTION: Please indicate which manufacturer has provided the existing fire alarm system within the Core Science Facility.

.1 ANSWER: Chubb is the existing fire alarm system integrator.

.8 QUESTION: MUNet Specification section 3.3.2.4 contains a table on communications pull box sizes which states for one 2" conduit that a 450mm x 500mm x 200mm size box is required. Electrical drawing E102 Detail 2 shows a 2" conduit within CSF pavilion B with a note on the pull boxes Indicating 300mm x 1220mm x 200mm size is required. Electrical drawings E404, E405 and E406 show the routing of this 2" conduit in CSF pavilion A and C, within the University Center and within the Chemistry/Physics building indicating pull box size of 200mm x 900mm x 100mm is required. Please confirm if we are to size the boxes according to the MUNet Specification or as indicated on the electrical drawings.

.1 ANSWER: Please supply boxes as indicated on the Electrical drawings.

.9 QUESTION: Can you please confirm who's supplying the two generators?

.1 ANSWER: The generators are supplied and installed by Division 26. Acceptable manufacturers: Caterpillar, Kohler, Cummins, MTU or approved equivalent.

.10 QUESTION: Where is an acceptable staging area to store material until erection? Is it possible to store material inside adjacent to the construction area?

.1 ANSWER: Yes, storing material in the shell space area is acceptable. Contractors are required to ensure that material is stored in accordance with safe storage requirements and is securely contained.

.11 QUESTION: As per Section 01 35 29.06 – Health and Safety Requirements, Part 1.7 – Contractors Safety Representative (CSR) • This section states that the Contractor must employ a qualified CSR. For clarification, is this CSR required to be on-site, full time and 100% dedicated to this project?

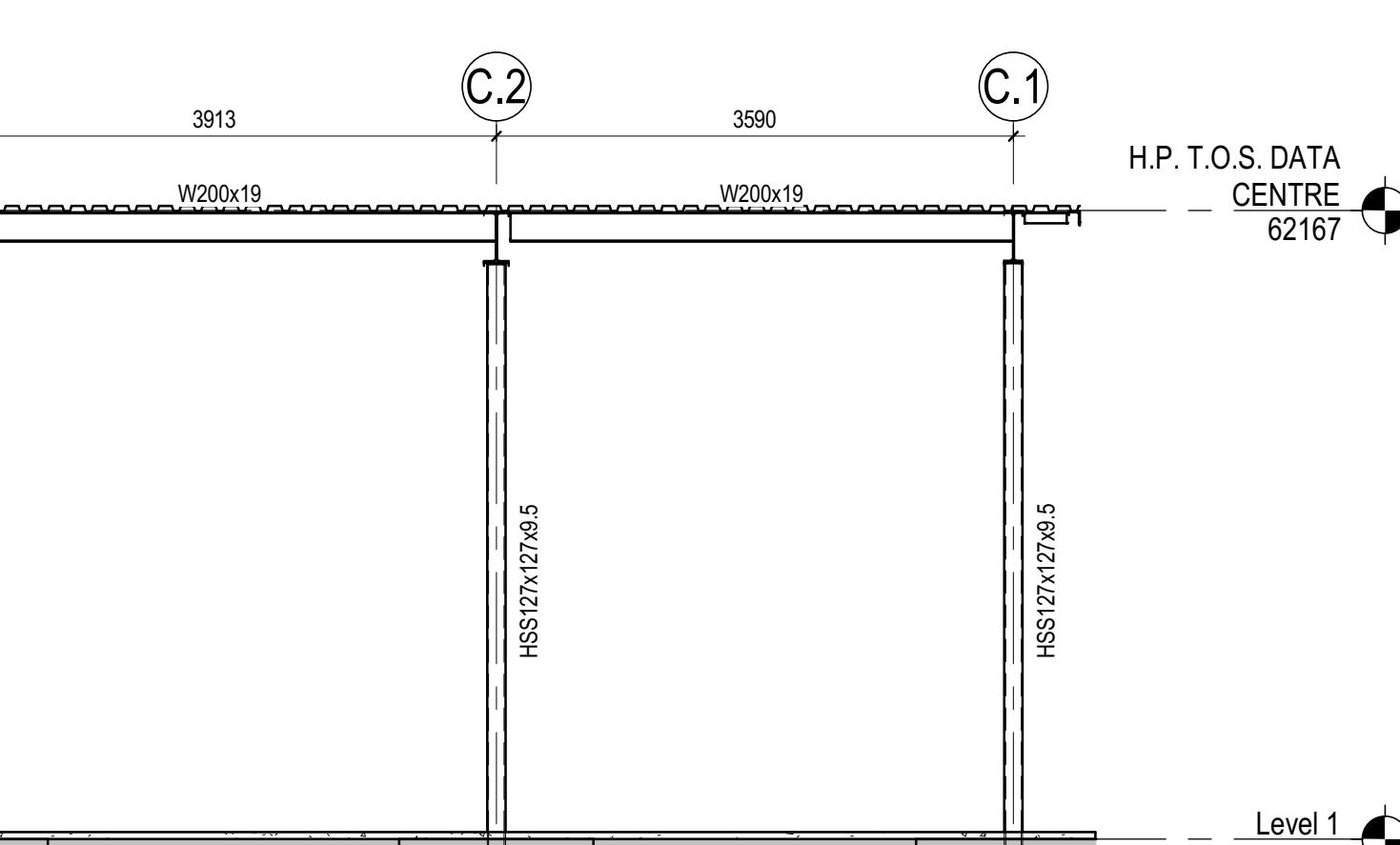
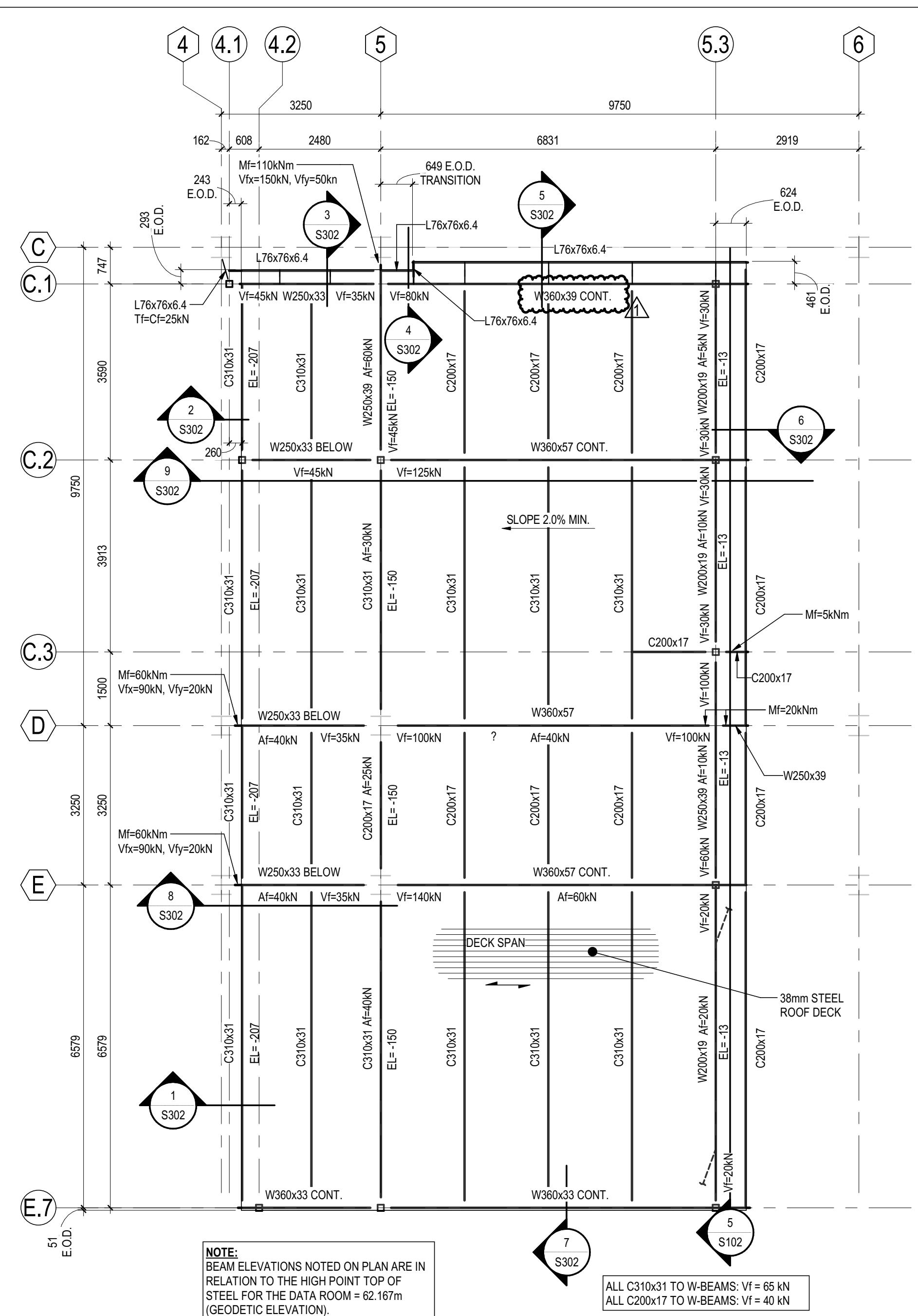
.1 ANSWER: The contractor shall employ a Contractor's Safety Representative (CSR), or have tasks completed by alternate staff member who is on site during the execution of the work.

.12 QUESTION: Can the General Contractor avail of the space on the west end of the Parkade across from the site for Lay down area/ Office trailer and storage of material? Summary of works states that washrooms onsite within the building can be used as designated by owner and Special conditions states to provide and maintain temporary toilets. Please advise which is correct and if we are to exclude or include costs for washroom facilities?

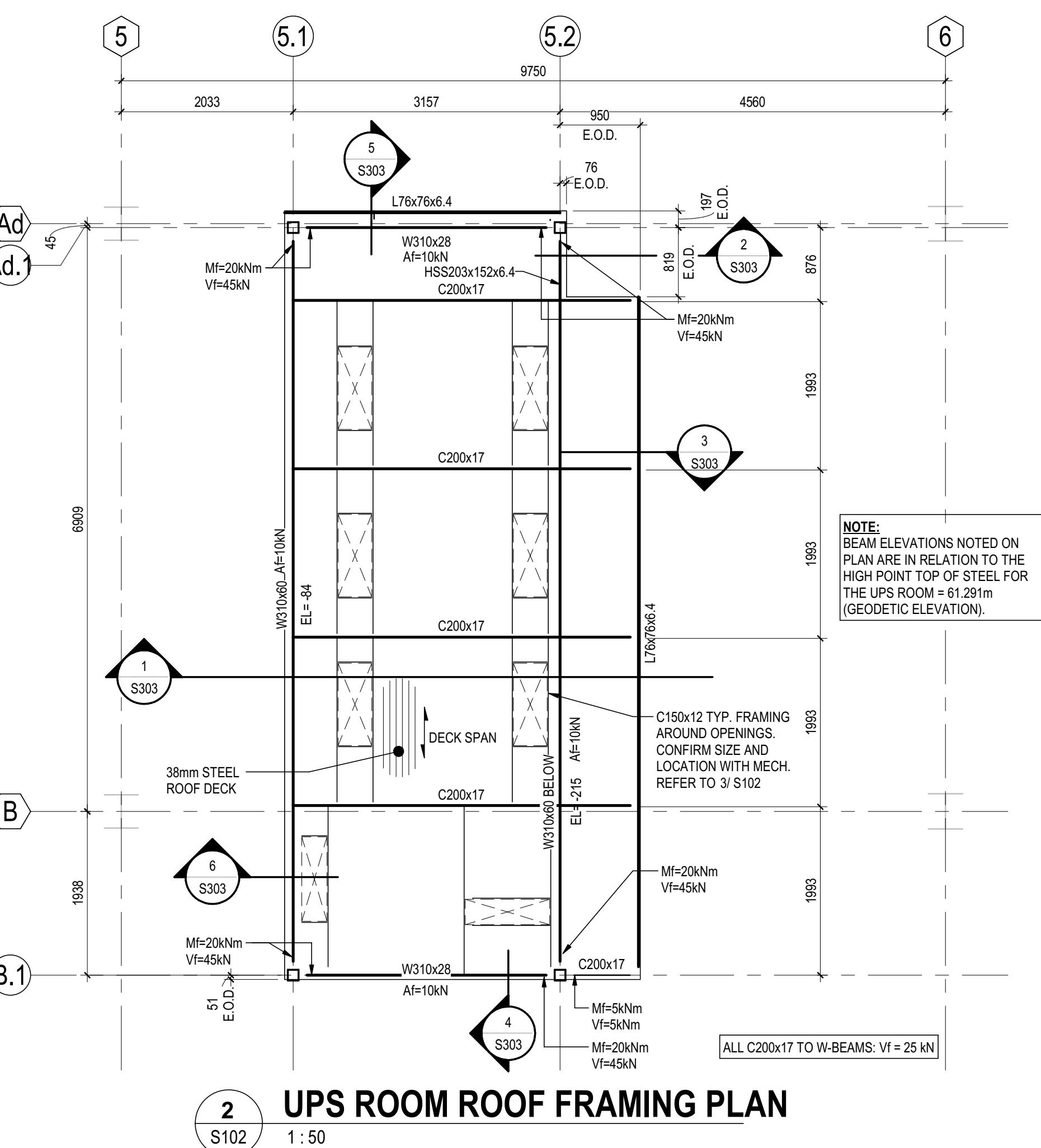
.1 ANSWER: This area is not available for the use of a trailer or laydown. An area within the existing shell space can be utilized as a lunch/office area. Washrooms within the building can be used, though coordination between building user groups will determine which are available. Areas designated by Owner's Representative and are predicated on keeping washrooms clean and garbage-free at all times to the satisfaction of the Owner's Representative. Washrooms are to be used by the contractor for their intended use only, as they are also open to building occupants. Construction tools are not permitted in the washrooms. Dust and construction debris must be managed outside the construction area.

.13 QUESTION: Regarding types D1, D2 and D3 for lighting - the part number indicates use with an Armstrong ceiling. Could you please confirm the ceiling tee section dimensions (e.g., grid type/profile) required to ensure proper fixture fit and compatibility?

.1 ANSWER: The ceiling in the data centre and UPS rooms are structural suspended ceilings. Our basis of design is Dynamax Plus as marketed by Armstrong World Industries. The grid comprises of main beams and cross tees which are both sized at 50mm wide x 92mm high. Both main beams and cross tees have continuous 3/8" threaded boss channels for mounting equipment to including light fixtures.

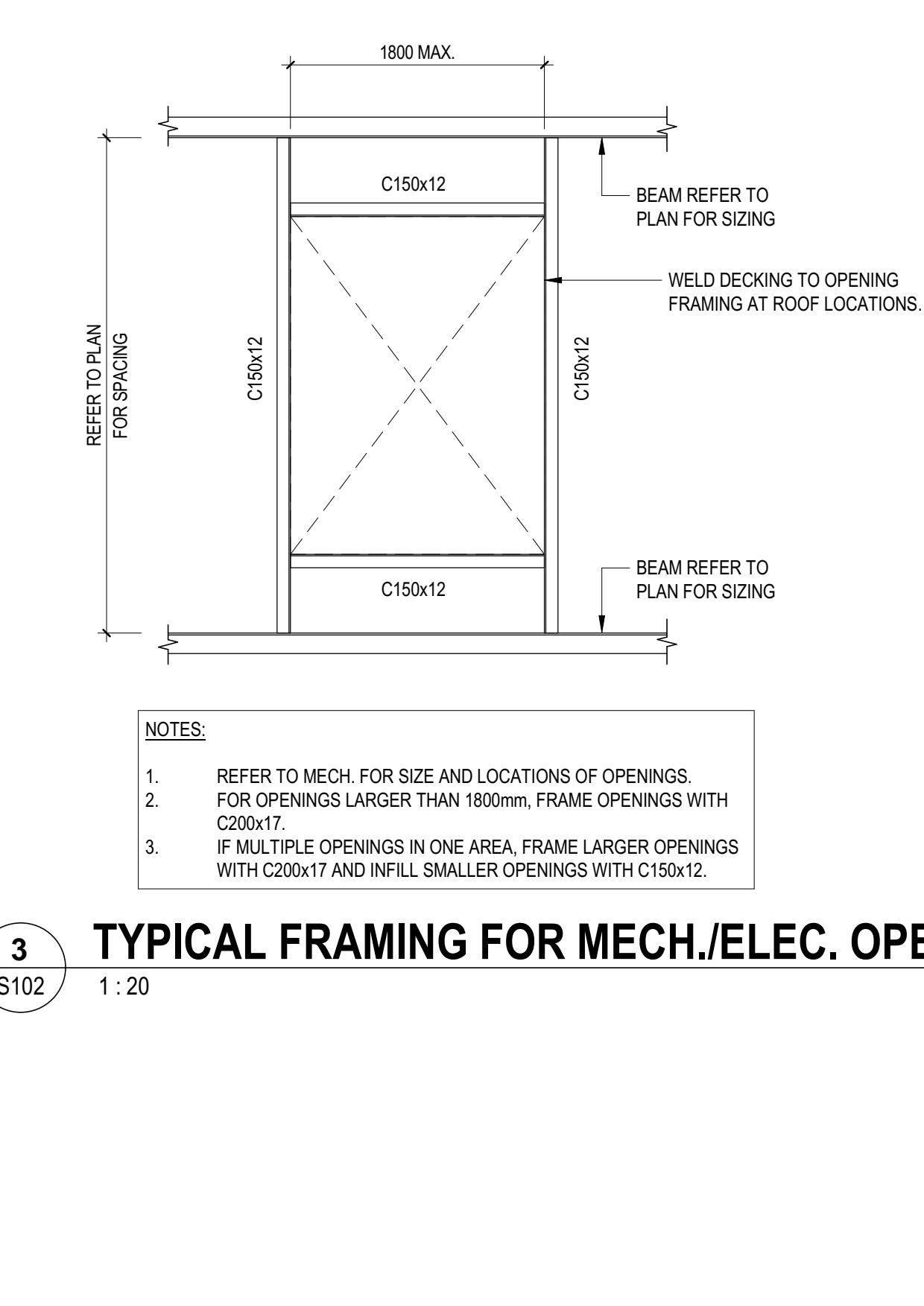


.14 QUESTION: Please confirm that the only galvanized structures on this project are the Vertical Conduit Structure (Ref Drw: S103), and the Generator Enclosure Structure (Ref Drw: S105).

.1 ANSWER: Galvanized items are the Vertical Conduit Structure (S103), Generator Enclosure Structure (S105), bollards (S501), and pipe support structures/components (M401).


.15 QUESTION: For both of these structures, please confirm if the steel can be ordered in as galvanized and all shop/field welding to be painted with cold galvanizing after fabrication, so to avoid the high cost of re-sending the fabricated steel back to the mainland for hot dip galvanizing, as there is currently no galvanizing plant on the island.

.1 ANSWER: Cold galvanizing is not acceptable.

END OF ADDENDUM



DATA ROOM BRACING ELEVATION

UPS ROOM ROOF FRAMING PLAN

2 S102 1:50

TYPICAL FRAMING FOR MECH./ELEC. OPENINGS

DESIGN NOTES (DATA ROOM FRAMING)	
1. ROOF DEAD LOAD (UNFACTORED):	
ROOFING SYSTEM	= 0.5 kPa
STEEL DECK	= 0.15 kPa
SUPERIMPOSED (M&E)	= 0.25 kPa
STRUCTURAL CEILING SYSTEM	= 5.45 kPa
TOTAL	= 6.35 kPa + STEEL WEIGHT
2. LIVE LOAD	= 1 kPa
3. SEISMIC LOAD:	
IN ACCORDANCE WITH NBCC2020 SECTION 4.1.8	
IMPORTANCE FACTOR, IE = 1.3 (HIGH)	
SITE CLASS C	
Sa(0.2) = 0.187	Sa(0.2) = 0.187
Sa(0.5) = 0.149	Sa(0.5) = 0.149
Sa(1.0) = 0.0925	Sa(1.0) = 0.0925
Sa(2.0) = 0.0465	Sa(2.0) = 0.0465
Sa(5.0) = 0.0142	Sa(5.0) = 0.0142
Sa(10.0) = 0.00506	Sa(10.0) = 0.00506
PGA = 0.0788	PGA = 0.0788
PGV = 0.106	PGV = 0.106
Rd = 1.5	Rd = 1.5
Ro = 1.3	Ro = 1.3

DESIGN NOTES (UPS ROOM FRAMING)	
1. ROOF DEAD LOAD (UNFACTORED):	
ROOFING SYSTEM	= 0.5 kPa
STEEL DECK	= 0.15 kPa
CEILING	= 0.5 kPa
SUPERIMPOSED (M&E)	= 0.25 kPa
TOTAL	= 1.4 kPa + STEEL WEIGHT
2. LIVE LOAD	= 1 kPa
3. SEISMIC LOAD:	
IN ACCORDANCE WITH NBCC2020 SECTION 4.1.8	
IMPORTANCE FACTOR, IE = 1.3 (HIGH)	
SITE CLASS C	
Sa(0.2) = 0.187	Sa(0.2) = 0.187
Sa(0.5) = 0.149	Sa(0.5) = 0.149
Sa(1.0) = 0.0925	Sa(1.0) = 0.0925
Sa(2.0) = 0.0465	Sa(2.0) = 0.0465
Sa(5.0) = 0.0142	Sa(5.0) = 0.0142
Sa(10.0) = 0.00506	Sa(10.0) = 0.00506
PGA = 0.0788	PGA = 0.0788
PGV = 0.106	PGV = 0.106
Rd = 1.5	Rd = 1.5
Ro = 1.3	Ro = 1.3

DECK PROFILE	SUPPORT FASTENING	SIDE LAP	PERIMETER SUPPORT	LOCATION
38mm DEEP GALVANIZED CANAM P-3606 - 20 Ga MIN (0.91mm)	36/4 PATTERN, CONNECT STEEL DECK TO SUPPORTS WITH POWER ACTUATED FASTENERS	#10 SCREWS @ 300 O.C.	SUPPORT FASTENING @ 150 O.C. MAX.	DATA ROOM ROOF AND UPS ROOM ROOF

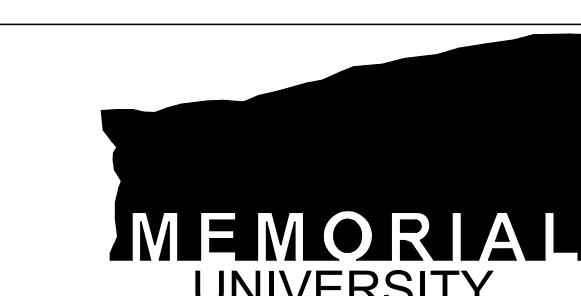
PATTERN	DIAGRAM
36/4	

No.	REVISION	DATE	A - DETAIL		
			A - LOCATION/DRAWING No.	B - LOCATION/DRAWING No.	C - DRAWING No.
1	ISSUED FOR ADDENDUM No. 5	2026.01.22			
0	ISSUED FOR TENDER	2025.09.12			

GENERAL NOTES

- DRAWINGS TO BE READ AS A SET.
- DO NOT SCALE FROM DRAWINGS
- THE CONTRACTOR IS TO VERIFY ALL DIMENSIONS AND SITE CONDITIONS PRIOR TO SUBMISSION OF TENDERS
- ALL DEFICIENCIES FOUND IN THIS DRAWING IS TO BE BROUGHT TO THE ATTENTION OF THE FACILITIES ENGINEERING AND DEVELOPMENT OFFICE OF THE DEPARTMENT OF FACILITIES MANAGEMENT, MEMORIAL UNIVERSITY OF NEWFOUNDLAND PRIOR TO THE SUBMISSION OF THE TENDERS.

Permit/Seal


PROVINCE OF NEWFOUNDLAND & LABRADOR
pegm ENGINEERING PERMIT 0291
STANTEC CONSULTING LTD.
Signature or Member Number (if Member-in-Responsible Charge)
0733

Stantec Consulting Ltd.
141 Kelsey Drive
St. John's, NL A1B 0L2
Tel: (709) 576-1458

Copyright Reserved
The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay.

Department of Facilities Management

This University was raised by the people of Newfoundland as a memorial to the fallen in the great wars, 1914-1918, 1939-1945, that in freedom of learning, their cause and sacrifice might not be forgotten.

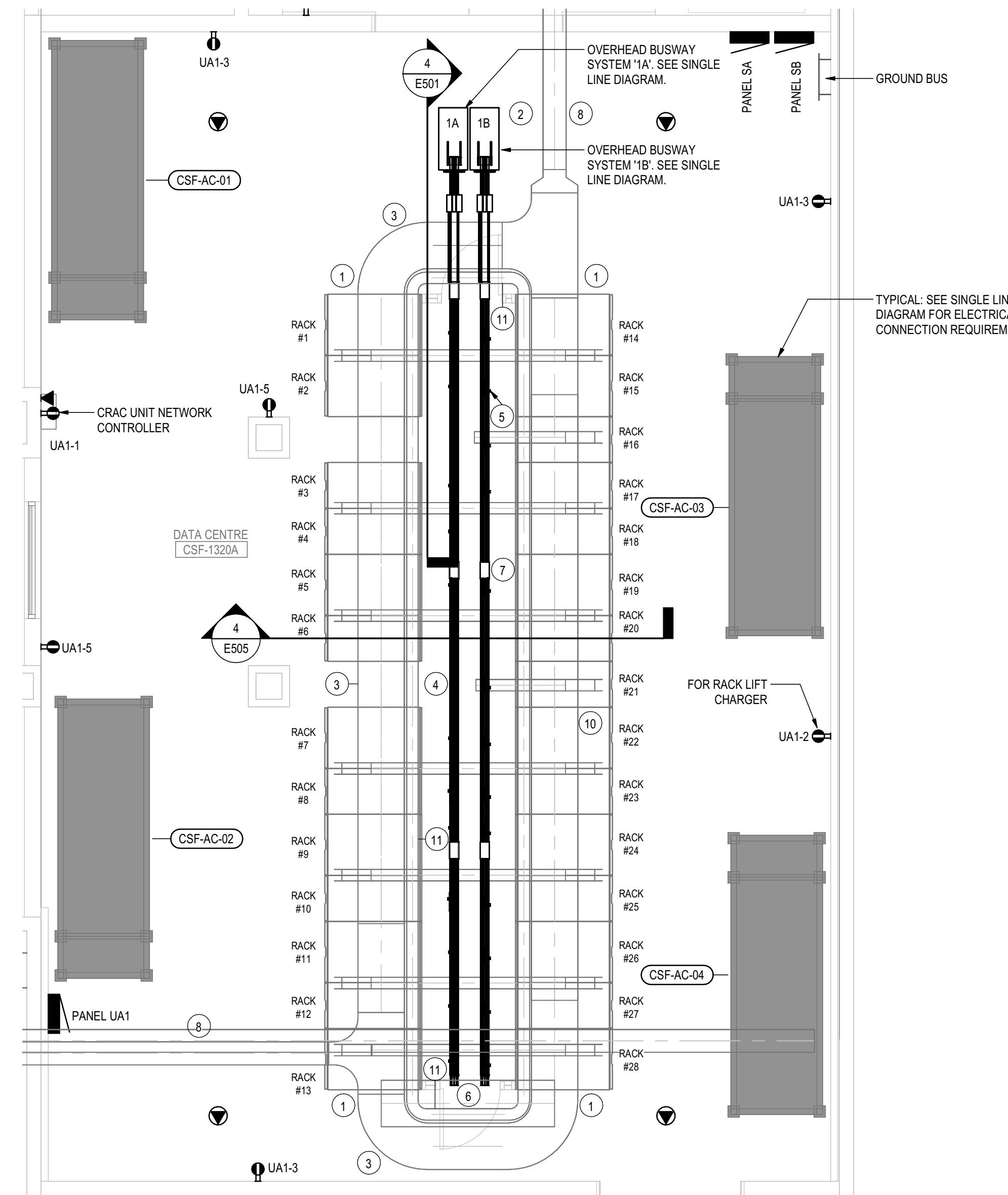
- Dedication plaque, Arts & Administration Building, St. John's Campus

PROJECT NAME:

CSF DATA CENTRE

CORE SCIENCE BUILDING,
PRINCE PHILIP DRIVE, ST. JOHN'S
NL

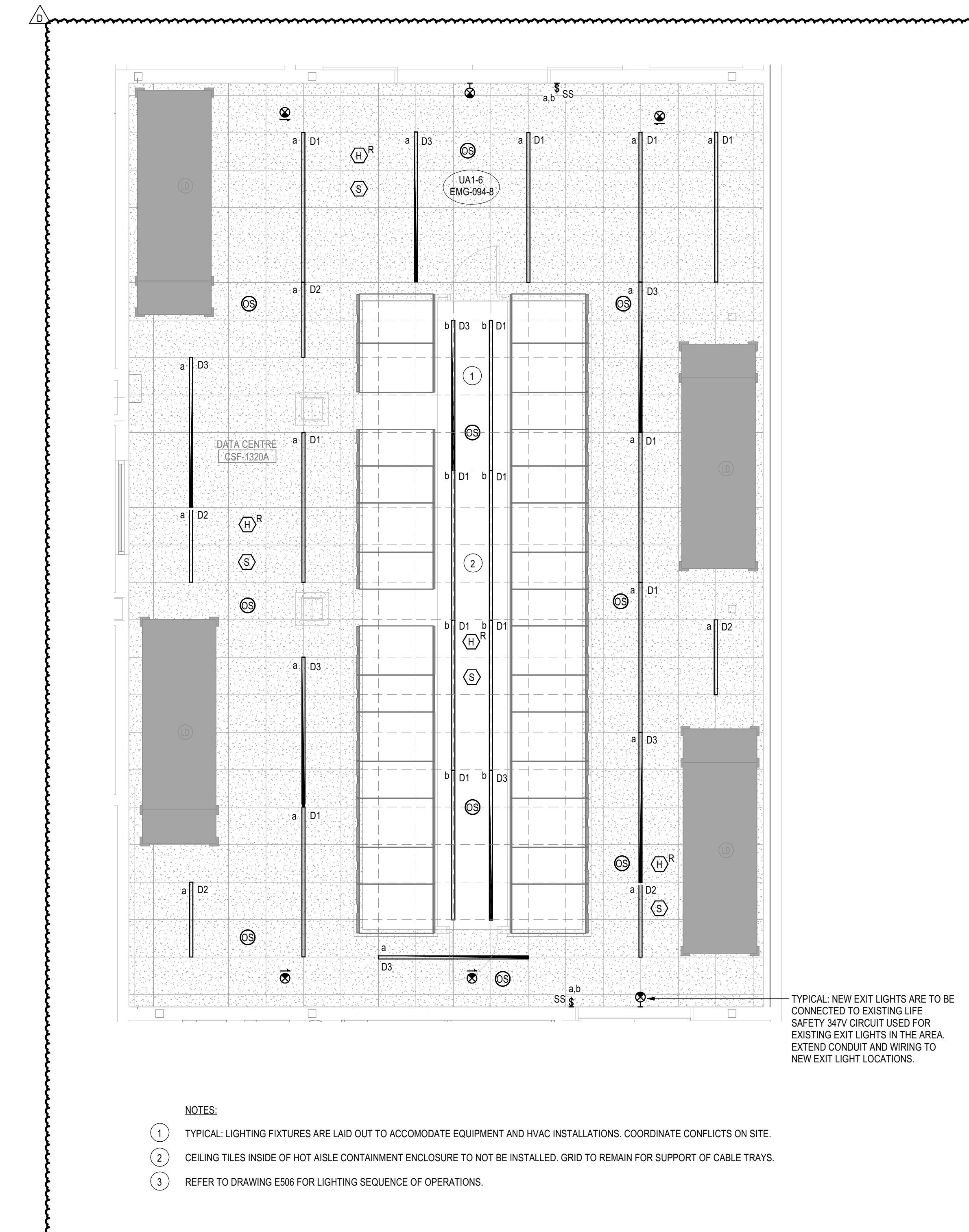
MUN Project #: CSF-004-23


DRAWING TITLE:

**DATA ROOM ROOF PLAN AND UPS
WALL SUPPORT PLANS**

DESIGNED:	A. GIRI	DRAWN:	C. BURT
REVIEWED:	A. MCGRATH	APPROVED:	A. MCGRATH
SCALE:	As indicated	DATE:	SEPTEMBER, 2025

STANTEC PROJECT No.
133412008


S102

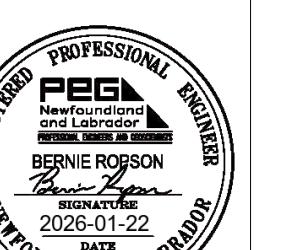
NOTES:

- 1 CABLE TRAY TO PENETRATE HOT AISLE CONTAINMENT ENCLOSURE. COORDINATE WITH CONTAINMENT SYSTEM PANELS TO ENSURE IT IS PROPERLY SEALED.
- 2 CABLE END FEEDS FOR POWER BUSWAY RAIL SYSTEM. INSTALL ABOVE STRUCTURAL GRID. TO BE SUPPORTED FROM STRUCTURE ABOVE.
- 3 TWO TIERS OF 60mm W X 100mm H BASKET TYPE CABLE TRAYS C/W TWO (2) 100mm DIVIDERS PER TRAY. CABLE TRAYS TO BE FACTORY PAINTED WHITE. TRAYS TO BE SUPPORTED FROM STRUCTURAL CEILING GRID SYSTEM. SEE DETAIL 2, DRAWING E502.
- 4 POWER BUSWAY SYSTEM RAILS. PROVIDE LENGTHS OF RAIL REQUIRED TO EXTEND LENGTH OF DATA RACKS AND EXTEND TO CABLE END FEEDS. TO BE SUPPORTED FROM STRUCTURE USING BUSWAY SYSTEM HANGERS.
- 5 POWER BUSWAY SYSTEM TAP OFF BOX. SEE ALSO SINGLE LINE DIAGRAM.
- 6 POWER BUSWAY END CAP REQUIRED AT THE END OF EACH POWER BUSWAY RAIL SYSTEM.
- 7 TYPICAL: POWER BUSWAY COUPLER TO CONNECT SECTIONS OF POWER BUSWAY RAIL SYSTEM TOGETHER.
- 8 SINGLE RUN OF 305 mm W X 100mm H BASKET TYPE CABLE TRAY TO EXTEND TO MDF AND STAGING ROOM. TO BE SUPPORTED BY STRUCTURAL CEILING GRID. TRAY TO BE FACTORY PAINTED WHITE. SEE DETAIL 2, DRAWING E502.
- 9 DATA RACK ENCLOSURES TO BE SECURED TO CONCRETE PAD USING ANCHOR BOLTS. REFER TO DETAIL 3, DRAWING E501.
- 10 TYPICAL: SINGLE RUN OF 153mm W X 100mm H BASKET TYPE CABLE TRAY TO EXTEND OVER TOP OF DATA RACKS FOR MANAGEMENT OF PDU POWER CORDS. TO BE COMPLETE WITH WATERFALL TYPE FITTINGS TO ALLOW FOR VERTICAL TRANSITION DOWN TO DATA RACKS. TRAY TO MOUNTED AND SECURED TO TOP OF STRUCTURAL CEILING GRID. SEE DETAILS ON DRAWINGS E501 AND E502.
- 11 153 mm W X 100mm H BASKET TYPE CABLE TRAY. TO BE SUPPORTED BY STRUCTURAL CEILING GRID. TRAY TO BE FACTORY PAINTED WHITE.

2 ENLARGED POWER AND DATA PLAN - DATA CENTRE 1320A
E401 1:50

1 ENLARGED LIGHTING PLAN - DATA CENTRE 1320A
E401 1:50 3

A - DETAIL
B - LOCATION/DRAWING No.
C - DRAWING No.


No.	REVISION	DATE
D	ISSUED FOR ADDENDUM NO. 5	2026.01.22
C	ISSUED FOR ADDENDUM NO. 4	2026.01.15
B	RE-ISSUED FOR TENDER	2025.12.05
A	ISSUED FOR TENDER	2025.09.11

GENERAL NOTES

1. DRAWINGS TO BE READ AS A SET.
2. DO NOT SCALE FROM DRAWINGS.
3. THE CONTRACTOR IS TO VERIFY ALL DIMENSIONS AND SITE CONDITIONS PRIOR TO SUBMISSION OF TENDERS.
4. ALL DEFICIENCIES FOUND IN THIS DRAWING IS TO BE BROUGHT TO THE ATTENTION OF THE FACILITIES ENGINEERING AND DEVELOPMENT OFFICE OF THE DEPARTMENT OF FACILITIES MANAGEMENT, MEMORIAL UNIVERSITY OF NEWFOUNDLAND PRIOR TO THE SUBMISSION OF THE TENDERS.

Permit/Seal

PROVINCE OF NEWFOUNDLAND AND LABRADOR
pegnl
ENGINEERING PERMIT J0291
STANTEC CONSULTING LTD.
04642
Signature or Member Number
(Member-in-Responsible Charge)

Stantec

Stantec Consulting Ltd.
141 Kelsey Drive
St. John's, NL A1B 0L2
Tel: (709) 576-1458 • www.stantec.com

Copyright Reserved

The Copyright to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay.

**MEMORIAL
UNIVERSITY**

Department of Facilities Management

This University was raised by the people of Newfoundland as a 'memorial to the fallen in the great wars, 1914-1918 1939-1945, that in freedom of learning, their cause and sacrifice might not be forgotten.'

- Dedication plaque, Arts & Administration Building, St. John's Campus

PROJECT NAME:

PRIMARY DATA CENTRE REPLACEMENT

CORE SCIENCE FACILITY
ST. JOHN'S, NL

MUN Project #: CSF-004-23

DRAWING TITLE:

ENLARGED FLOOR PLANS - DATA CENTRE

DESIGNED: MG/JD DRAWN: MG/JD

REVIEWED: APPROVED: BR

SCALE: 1 : 50 DATE: SEPTEMBER, 2025

STANTEC PROJECT No.

DRAWING No.
133412008 E401

APPENDIX 6

Geotechnical Investigation Proposed MUN Core Sciences Building

**Geotechnical Investigation
Proposed MUN Core Sciences
Building, Arctic Avenue and
Clinch Crescent,
St. John's, NL**

Prepared for:
Memorial University of
Newfoundland
PO Box 4200
St. John's, NL A1C 5S7

Prepared by:
Stantec Consulting Ltd.
607 Torbay Road
St. John's, NL A1A 4Y6
Tel: (709) 576-1458
Fax: (709) 576-2126

File No: 140132018

Final Report

October 2, 2013

**GEOTECHNICAL INVESTIGATION
PROPOSED MUN CORE SCIENCES BUILDING, ARCTIC AVENUE AND CLINCH CRESCENT,
ST. JOHN'S, NL**

Table of Contents

1.0	INTRODUCTION	1
2.0	SITE AND GEOLOGY.....	1
3.0	FIELD PROCEDURES	2
4.0	LABORATORY TESTING	2
5.0	SUBSURFACE CONDITIONS	3
5.1	Asphalt	3
5.2	Fill.....	3
5.3	Fluvial Deposits.....	3
5.4	Till.....	4
5.5	Bedrock.....	4
5.6	Groundwater.....	4
6.0	DISCUSSION AND RECOMMENDATIONS	5
6.1	Site Preparation	6
6.2	Site Construction Dewatering	6
6.3	Excavations and Temporary Shoring	7
6.4	Structural Fill	7
6.5	Foundation and Wall Backfill	8
6.6	Preliminary Foundation Design	9
6.7	Floor Slab Slabs and Long-Term Drainage Requirements.....	9
6.8	Seismic Site Classification	10
6.9	Quality Assurance/Quality Control	10
7.0	CLOSURE.....	10

LIST OF ATTACHMENTS

Statement of General Conditions
Symbols and Terms Used on Borehole and Test Pit Records
Borehole Records
Figure 1 to 4: Gradation Curves
Drawing No. 1140132018-GE-01: Borehole Location Plan

LIST OF TABLES

Table 5.1	Groundwater Measurements	5
Table 6.1	Recommended Compaction Requirements	8

**GEOTECHNICAL INVESTIGATION
PROPOSED MUN CORE SCIENCES BUILDING, ARCTIC AVENUE AND CLINCH CRESCENT,
ST. JOHN'S, NL**

INTRODUCTION
October 2, 2013

1.0 INTRODUCTION

Further to the request and authorization of Memorial University of Newfoundland (MUN), Stantec Consulting Ltd. (Stantec) has completed a geotechnical investigation on a parcel of land located in the campus of Memorial University of Newfoundland (MUN), near the intersection of Arctic Avenue and Clinch Crescent in St. John's, Newfoundland and Labrador. The purpose of this geotechnical investigation was to determine the subsurface soil, rock and groundwater conditions at the site to provide geotechnical comments and recommendations for site development and preliminary foundation design for the proposed development. Although final development details were not known at the time of issuing this report, it is understood that the proposed development is to comprise of a multi-story and multi-wing, institutional building. It is further understood that an underground parking garage option is no longer being considered for this development.

The scope of work completed for this project was in general accordance with Stantec's geotechnical proposal dated June 17, 2013, and included the following; a geotechnical field investigation consisting of fourteen (14) boreholes advanced at locations selected by Stantec; completion of a laboratory testing program consisting of ten (10) gradation analyses and moisture content determinations of representative soil samples collected during the field investigation; and, submittal of a geotechnical report.

This report has been prepared specifically and solely for the proposed development described herein and contains all of the findings of this investigation, including geotechnical comments and recommendations.

2.0 SITE AND GEOLOGY

The proposed development is located within the campus of Memorial University of Newfoundland, near the intersection of Arctic Avenue and Clinch Crescent in St. John's, Newfoundland and Labrador, as shown on the attached Drawing No. 140132018-GE-01, Borehole Location Plan. The site is currently occupied by a paved parking lot. Although no topography information of the site was available for inclusion in this report, the site is generally level, varying not more than a couple metres in elevation throughout.

Based on our previous experience in the area and on the existing information from publicly available provincial surficial geological mapping, the native overburden material in the area consists of a thin veneer overlying glacial till, generally less than 5 m in total thickness and extending to bedrock. Bedrock geology at the site is mapped as sedimentary sandstones to siltstones.

**GEOTECHNICAL INVESTIGATION
PROPOSED MUN CORE SCIENCES BUILDING, ARCTIC AVENUE AND CLINCH CRESCENT,
ST. JOHN'S, NL**

FIELD PROCEDURES
October 2, 2013

3.0 FIELD PROCEDURES

The geotechnical field investigation work at the site consisted of advancing fourteen (14) boreholes from August 21 to 29, 2013, using a model CME-85 truck-mounted geotechnical drill subcontracted by Stantec. The CME-85 drill supplied is capable of advancing a borehole through soil and rock strata in addition to obtaining samples from these strata. The approximate borehole locations are shown on the attached Borehole Location Plan (Drawing No. 140132018-GE-01). Boreholes were advanced through overburden soils into bedrock by the diamond wet-rotary drilling method of NQ-size (76 mm outside diameter). Boreholes were advanced into bedrock at all locations to a total depth below ground surface ranging from 7.3 m in borehole BH-13 to 10.4 m depth in borehole BH-02. Upon completion of each individual borehole, an open-ended plastic standpipe was placed in the borehole and a protective, flush-mount monitoring well cover was installed at the ground surface. It is the responsibility of the Client and/or site Owner to address any potential hazards due to settlement of the monitoring well covers, should it occur at the borehole locations.

The field work was conducted under the supervision of Stantec personnel who maintained detailed field records of the various soil strata and groundwater conditions encountered. The soils were sampled and classified in general accordance with the procedures outlined in the attached explanatory key, Symbol and Terms Used on Borehole Records and Test Pit Records. Representative soil and rock core samples were obtained directly from borehole during the field investigation. All soil samples were stored in moisture proof containers and sent to our laboratory in St. John's for classification and testing. Rock core samples were placed in wooden core boxes and also sent to our laboratory in St. John's. Selected soil samples were chosen for gradation testing as described in the following section. Soil and rock samples remaining after testing will be stored for a period of three months at which time they will be discarded unless instructions to the contrary are received.

The borehole locations were selected by Stantec and established in the field using a surveyors tape. Borehole locations were marked in the field upon completion. Final borehole coordinates and elevations at the surface were not surveyed at the time of issuing this report. It is understood that the Client and/or Developer are responsible for providing the surveying services.; therefore, all measurements reported herein are referenced relative to ground surface at each individual borehole location.

4.0 LABORATORY TESTING

For this investigation, laboratory testing consisting of soil gradation and moisture content determinations were performed on ten (10) representative soil samples obtained within the native, fluvial or till soil layers encountered at the site. The laboratory test results are presented in

**GEOTECHNICAL INVESTIGATION
PROPOSED MUN CORE SCIENCES BUILDING, ARCTIC AVENUE AND CLINCH CRESCENT,
ST. JOHN'S, NL**

SUBSURFACE CONDITIONS
October 2, 2013

the attached Figures 1 to 4, Gradation Curves. It should be noted that due to the use of the SPT (standard penetration test) sampler used in obtaining the soil samples, soil particles larger than the inner diameter opening size of 35 mm would be excluded. A discussion of the gradation analyses results are provided below.

5.0 SUBSURFACE CONDITIONS

Subsurface conditions observed in the boreholes are summarized in the subsections below and described in detail on the attached Borehole Records along with an explanatory key; Symbols and Terms used on Borehole and Test Pit Records.

5.1 Asphalt

A layer of asphalt of approximately 100 mm in thickness was encountered at the surface at all borehole locations.

5.2 Fill

Underlying the asphalt, a layer of fill was encountered at all borehole locations and extended to depths ranging from 0.6 m to 2.3 m below the existing ground surface. Based on visual material classification, the fill varied from a brown, silty sand with gravel (SM), silty gravel with sand (GM) or well-graded gravel with sand (GW). Based on SPT blow count N-values, the relative density for the fill varied from loose to dense, but was generally compact.

5.3 Fluvial Deposits

Underlying the fills materials, a fluvial soil deposit was encountered in the following boreholes: BH-01, BH-07, BH-10, and BH-13. The fluvial deposit layer varied in thickness from 1.6 m in BH-10 to 2.4 m in boreholes BH-07 and BH-13 m. Based on the visual field classifications and laboratory testing results, the layer is described as grey, silty sand (SM) to sandy silt (ML). Based on SPT blow count N-values, the relative density for the fluvial deposit layer varied from compact to dense, except in borehole BH-01 where the layer was classified as loose.

Gradation analyses performed on four (4) representative samples of the fluvial deposit materials indicated a soil gradation range of 3% to 28% gravel, 12% to 63% sand and 34% to 80% fines. The moisture content of the samples tested ranged from 12% to 25%. The results of the gradation analyses are shown on attached Figures 1 to 4.

This stratum at the site seems to be located at the northern site boundary, adjacent to Arctic Avenue. This location possibly coincides with a former geological river or other waterway feature that has since been altered and in-filled.

**GEOTECHNICAL INVESTIGATION
PROPOSED MUN CORE SCIENCES BUILDING, ARCTIC AVENUE AND CLINCH CRESCENT,
ST. JOHN'S, NL**

SUBSURFACE CONDITIONS
October 2, 2013

5.4 Till

Underlying the fill and/or fluvial deposits was a grey, glacial till layer which was encountered at all borehole locations. The till layer varied in thickness from 1.6 m in BH-07 to 5.5 m in borehole BH-05. Based on visual field and laboratory classifications, the layer varied from silty sand with gravel (SM), well-graded sand with silt and gravel (SW-SM), silty gravel with sand (GM) to well-graded gravel with silt and sand (GW-GM). The till was noted to include occasional to some cobbles and occasional boulders. Generally, the largest particle size was observed to be less than 400 mm in diameter based on encountering one (1) boulder in borehole BH-10 at 4.4 m depth. Additionally, a cobble and/or boulder zone, observed to be generally less than 2 m in thickness, was noted in boreholes BH-03 and BH-13. In terms of relative density, based on SPT index values, the till is classified as compact to dense.

Gradation analyses conducted on six (6) representative samples of the till soil indicated a soil gradation range of 37% to 53% gravel, 40% to 53% sand and 7% to 44% silt and/or clay fines. The moisture content of the samples tested ranged from 7% to 19%. The results of the gradation analyses are shown on attached Figures 1 to 4.

5.5 Bedrock

Bedrock was encountered at all borehole locations, underlying the fill, fluvial deposit and till layers, at depths below ground surface ranging from 4.9 m in borehole BH-04 to 7.7 m depth in borehole BH-02. The bedrock ranged in classification from greenish grey laminated or thinly bedded shale or light red interbedded sandstone. The bedrock characteristics were generally described as fresh to slightly weathered, and medium strong to strong. Based on rock quality data (RQD) measurements taken in the field, the bedrock quality is noted to vary from very severely fractured to intact.

5.6 Groundwater

Groundwater measurements were obtained in standpipes installed in each of the boreholes advanced and the data are presented in the following table:

**GEOTECHNICAL INVESTIGATION
PROPOSED MUN CORE SCIENCES BUILDING, ARCTIC AVENUE AND CLINCH CRESCENT,
ST. JOHN'S, NL**

DISCUSSION AND RECOMMENDATIONS
October 2, 2013

Table 5.1 Groundwater Measurements

Borehole ID	Groundwater Depth (m.b.g.s.)*	
	Aug. 2013	Sep. 19, 2013
BH-01	1.25	1.26
BH-02	1.25	1.29
BH-03	0.93	0.95
BH-04	†	1.13
BH-05	2.05	2.03
BH-06	†	†
BH-07	†	1.50
BH-08	1.14	1.22
BH-09	0.92	†
BH-10	‡	‡
BH-11	1.04	1.05
BH-12	0.90	0.93
BH-13	†	1.31
BH-14	1.13	1.14

† Wellhead not accessible, parked car.

‡ Obstruction in standpipe, no reading collected

* Meters below ground surface

It should be noted that water levels may fluctuate seasonally and in response to precipitation events. For a better understanding of the long-term groundwater level trend(s) of the site, additional periodic groundwater level measurements are recommended.

6.0 DISCUSSION AND RECOMMENDATIONS

It is understood that the development proposed for this site is in the planning stages. At the time of issuance of this report, Stantec has not been provided with any site development details. Therefore, the recommendations and discussion presented below are for preliminary planning and design purposes only. Once final foundation design details and site development plans become available, Stantec should be immediately advised for re-evaluation of the recommendations provided in this report.

For discussion purposes herein, it is assumed that standard construction, and site development practices will be used for this proposed development. Further, it is assumed that final grades will be close to the existing site grades. From a site development perspective, the native compact to very dense till or bedrock at this site are suitable bearing surfaces for placement of structural

**GEOTECHNICAL INVESTIGATION
PROPOSED MUN CORE SCIENCES BUILDING, ARCTIC AVENUE AND CLINCH CRESCENT,
ST. JOHN'S, NL**

DISCUSSION AND RECOMMENDATIONS
October 2, 2013

fill and construction of shallow foundations. All existing fills materials combined with any loose or disturbed fluvial material or native till should be excavated prior to placement of structural fill or foundations. Further detailed recommendations on the site preparation, structural fill placement and compaction along with the design of shallow foundations for this development are discussed in the appropriate subsections below.

6.1 Site Preparation

Site preparation within the proposed building envelope should include the excavation and removal of all existing fills and any loose native till or fluvial deposit soils to expose the undisturbed compact to dense native till, fluvial deposits or bedrock. Any softened or disturbed areas evident upon proof rolling should be over-excavated and replaced with suitably compacted structural fill.

Within the proposed site, the combined thickness of fill materials and loose native fluvial deposits or till soils to be removed, as identified in the boreholes, will vary in thickness from about 0.6 m at borehole location BH-14 to 4.0 m at borehole location BH-01 below existing ground surface.

The site is underlain by silty soils (i.e., fines content in excess of 10%). Typically, where the fines content of a soil is in excess of 10%, the soil will tend to soften and become unsuitable and difficult to work when it becomes wetter than its optimum moisture content and is disturbed. In addition, silty soils that have been successfully compacted and approved, may require removal if they subsequently become wet and softened from water infiltration, precipitation or freezing.

6.2 Site Construction Dewatering

At this site, the groundwater depth below the ground surface at each well (e.g. borehole location) varied from 0.93 m to 2.03 m as obtained from the readings on September 18, 2013. On an average, the water table appears to be at about 1.0 m depth below existing grade at the site. Therefore, excavations will encounter groundwater at the site in the course of site preparation work.

Depending on the final excavation and founding level depths proposed for this development, appropriate construction dewatering measures will be required. Discharge of collected water from the site must be conducted in accordance with applicable environmental guidelines for sediment control and if encountered, any environmental contamination concentrations. The contractor and/or designer should review with Stantec the construction dewatering plans that would be implemented for the proposed development when they become available.

**GEOTECHNICAL INVESTIGATION
PROPOSED MUN CORE SCIENCES BUILDING, ARCTIC AVENUE AND CLINCH CRESCENT,
ST. JOHN'S, NL**

DISCUSSION AND RECOMMENDATIONS
October 2, 2013

6.3 Excavations and Temporary Shoring

All excavations need to be carried out such as not to undermine adjacent structures or induce unacceptable settlements. Stantec should be provided with excavation plans to ensure that adjacent structures are not affected by the proposed excavations.

Temporary slopes in the till or structural fill should not be steeper than 1 horizontal to 1 vertical (1H:1V) with a depth of excavation limited to less than 3.0 m. Where space constraints do not allow for safe sloping of excavations in soils, shoring would be required. Where groundwater seepage into excavations may be present, additional slope flattening or additional mitigation may be required to maintain the stability of temporary slopes.

A layer of fluvial material consisting of fine silty sand and sandy silts soils is located near the northern site boundary, adjacent to Arctic Avenue. Excavations in this layer may result in significant instabilities. Additionally, groundwater infiltration and/or construction disturbance may cause a condition of flowing soils within this layer. Measures to mitigate or reduce the potential construction-related difficulties may include over-excavation and replacement with structural fill and/or braced shoring in this localized area. A geotechnical engineer from Stantec should be on-site to observe the soil condition of this layer during site excavation work.

Although excavations into bedrock are generally not indicated for this development, for planning purposes, temporary excavations into rock would generally be stable at slopes of 1 horizontal to 4 vertical (1H:4V). Pre-splitting, line drilling and controlled blasting will be required to achieve the suggested steep slopes in bedrock. Stantec will be able to comment further on the blasting related matters as the design grades are finalized. Scaling of all of the rock faces should be carried out after excavation and meshing may be required.

Any shoring, soil and rock slopes should be inspected by experienced geotechnical personnel for evidence of instability. The contractor and/or designer should review with Stantec the construction excavation slopes and shoring plans that would be implemented at the construction phase for the proposed development when they become available.

6.4 Structural Fill

Structural fill should consist of a well-graded, free-draining granular material such as pit run sand and gravel or processed blasted rock fill. The maximum particle size should not exceed 200 mm. Within 300 mm of the underside of foundations or slab-on-grade, the maximum particle size should not exceed 100 mm. Use of rock fill is recommended in areas such as excavation bases where wet conditions may be encountered. Excavated soil areas should be proof rolled prior to placement of structural fill or setting of foundation formworks.

Site excavated native till soils and existing fill materials may be suitable for re-use as structural fill provided the moisture content is maintained within 1% to 2% of its optimum compaction

**GEOTECHNICAL INVESTIGATION
PROPOSED MUN CORE SCIENCES BUILDING, ARCTIC AVENUE AND CLINCH CRESCENT,
ST. JOHN'S, NL**

DISCUSSION AND RECOMMENDATIONS
October 2, 2013

moisture content value and the maximum particle size gradation criteria is followed. If consideration is given to reusing the in situ native soils and/or existing site fills as structural fill, the above noted concerns regarding handling and placement of these materials under wet conditions must be considered otherwise the use of imported structural fill materials is recommended.

Structural fill should be placed in horizontal lifts and compacted to the specifications outlined below in Table 6.1. In addition to the compaction requirements presented in the table below, visual approval of all structural fill during placement is recommended. The lift thickness used during structural fill placement should be compatible with the compaction equipment and material type to ensure the required density is achieved throughout the lift thickness. Due to the particle size distribution of coarser grained soils (e.g., rock fill), verification of the field density by geotechnical personnel by visual inspection during proof rolling will be required. As a general guide, structural fill should be placed in 300 m to 400 mm lifts and compacted with a 10 tonne vibratory roller.

Table 6.1 Recommended Compaction Requirements

Structural Fill Application	Compaction Requirements Percent of Standard Proctor (ASTM D698) maximum dry density
Foundation Areas	100
Roadway/Driveway Areas	100
Floor Slab Areas	98
General Backfill	95

6.5 Foundation and Wall Backfill

Foundation and/or wall backfill materials should consist of compacted, well-graded gravel or clear stone, with a maximum size of 100 mm, and be backfilled to within 1.0 m depth of exterior subgrades. Within 1.0 m depth of exterior grades, a less permeable soil material free of organics should be used to reduce surface water infiltration into the foundation drainage system. As an alternative, the surface can be capped with a pavement structure. To reduce the migration of finer soil particles into clear stone backfill and such other dissimilar material interfaces, use of a geotextile filter fabric is recommended. The final exterior grades should be sloped such that surficial water flows are diverted away from the proposed building.

To limit horizontal earth pressures during compaction of materials behind exterior walls, the use of larger compaction equipment (e.g. roller compactors) or equipment mounted compactors (e.g. hydraulic plate compactor/Hoepac) should not be used within 2.0 m of subsurface walls. Compaction within the 2.0 m zone directly behind subsurface walls should be accomplished

**GEOTECHNICAL INVESTIGATION
PROPOSED MUN CORE SCIENCES BUILDING, ARCTIC AVENUE AND CLINCH CRESCENT,
ST. JOHN'S, NL**

DISCUSSION AND RECOMMENDATIONS
October 2, 2013

using hand operated or walk-behind equipment in conjunction with using a horizontal lift thickness not exceeding 150 to 200 mm.

6.6 Preliminary Foundation Design

Shallow foundations founded on the undisturbed, dense to very dense glacial till may be designed using a maximum net allowable bearing pressure of 250 kPa. Foundations constructed on compacted structural fill, such as pit run sand and gravel, may be designed for a maximum net allowable bearing pressure of 150 kPa. If better quality structural fill is used, such as a suitably placed and compacted, well-graded, 100 mm minus processed blasted rock fill, then foundations may be designed using a maximum net allowable bearing pressure of 250 kPa. A stringent quality control program to monitor the selection of structural fill materials, testing, field placement and compaction must be implemented. To minimize differential settlement arising from different bearing pressures on native till and pit run sand and gravel fill, we strongly recommend use of blasted rock fill for site development.

For footing widths greater than 1 m, the associated load induced total settlements for the above recommended allowable bearing pressures are estimated to be to less than 25 mm with differential settlement less than 19 mm.

If applicable, foundations on sound or intact bedrock may be designed a maximum net allowable bearing pressure of 600 kPa. Settlements for foundations on sound bedrock will be negligible.

To confirm the above recommendations pertaining to allowable bearing pressures, the associated load induced settlements should be determined once the final foundation designs are completed.

Foundations should not be placed on frozen ground, and temporary frost protection during freezing conditions should be provided after construction of footings. Exterior footings and footings in unheated areas should have a minimum soil cover of 1,200 mm or equivalent for frost protection.

6.7 Floor Slab Slabs and Long-Term Drainage Requirements

For the preliminary design of floor slabs constructed on compacted granular structural fill subgrades, a modulus of subgrade reaction of 50 MPa/m may be used. This value is based on a 300 mm square steel plate. A 150 mm thick layer of free-draining granular material should be provided immediately beneath the floor slabs, such as a 25 mm minus-sized crushed rock material with permeability greater than 10-1 cm/sec. Use of a vapour barrier beneath floor slabs is recommended in enclosed heated areas.

**GEOTECHNICAL INVESTIGATION
PROPOSED MUN CORE SCIENCES BUILDING, ARCTIC AVENUE AND CLINCH CRESCENT,
ST. JOHN'S, NL**

CLOSURE
October 2, 2013

The requirements for long-term or permanent drainage control around and below the structures will depend on the details of the site development and the final finished grades. A perforated drain pipe, surrounded with clear stone and leading to a positive discharge is recommended along exterior foundations. An under-slab drainage system leading to a positive discharge or pumping location(s) is recommended if the groundwater level is anticipated to be within 1.0 m of the finished slab on grade elevation.

6.8 Seismic Site Classification

Based on the soil and rock conditions encountered at the site, a Seismic Site Response Site Classification of Site Class C is most appropriate for this site. This classification is determined in accordance with clause 4.1.8.4 of the National Building Code of Canada (NBCC, 2005) and assumes that the existing fill materials and loose native till or fluvial deposit soils would be removed.

6.9 Quality Assurance/Quality Control

It is recommended that a program of quality assurance, quality control and inspection be carried out by geotechnical personnel during earthworks, and foundation/slab construction. Such a program should include verification of excavation bases and approval before placement of additional structural fill or footing concrete; founding level inspection and approval; compaction testing during structural fill placement; subgrade proof-rolling, and field and laboratory testing during placement of granular fill materials. Stantec would be pleased to provide a cost proposal to undertake such services.

7.0 CLOSURE

Use of this report is subject to the Statement of General Conditions, attached. It is the responsibility of Memorial University of Newfoundland who is identified as "the Client" within the Statement of General Conditions, and its agents to review the conditions and to notify Stantec should any of these not be satisfied. The Statement of General Conditions addresses the following: use of the report; basis of the report; standard of care; interpretation of site conditions; varying or unexpected site conditions; and planning, design or construction.

Stantec requests an opportunity to review the comments and recommendations provided herein when the project specifications and drawings become available.

**GEOTECHNICAL INVESTIGATION
PROPOSED MUN CORE SCIENCES BUILDING, ARCTIC AVENUE AND CLINCH CRESCENT,
ST. JOHN'S, NL**

CLOSURE
October 2, 2013

This report was prepared by the undersigned below with review by Arun Valsangkar, Ph.D., P.Eng., Senior Geotechnical Engineer. We trust this report meets your present requirements. Should any additional information be required, please do not hesitate to contact our office at your convenience.

Sincerely,
STANTEC CONSULTING LTD

Erich Lenz, P.E., P.Eng.
Geotechnical Engineer

Lorne Boone, M.Eng., P.Geo., P.Eng.
Principal, Senior Geotechnical Engineer

Attachments: Statement of General Conditions
Symbols and Terms Used on Borehole and Test Pit Records
Borehole Records
Figure 1 to 4: Gradation Curves
Drawing No. 1140132018-GE-01: Borehole Location Plan

GEOTECHNICAL INVESTIGATION
PROPOSED MUN CORE SCIENCES BUILDING, ARCTIC AVENUE AND CLINCH CRESCENT,
ST. JOHN'S, NL

ATTACHMENTS

Statement of General Conditions
Symbols and Terms Used on Borehole and Test Pit Records
Borehole Records
Figure 1 to 4: Gradation Curves
Drawing No. 1140132018-GE-01: Borehole Location Plan

STATEMENT OF GENERAL CONDITIONS

USE OF THIS REPORT: This report has been prepared for the sole benefit of the Client or its agent and may not be used by any third party without the express written consent of Stantec Consulting Ltd. and the Client. Any use which a third party makes of this report is the responsibility of such third party.

BASIS OF THE REPORT: The information, opinions, and/or recommendations made in this report are in accordance with Stantec Consulting Ltd.'s present understanding of the site specific project as described by the Client. The applicability of these is restricted to the site conditions encountered at the time of the investigation or study. If the proposed site specific project differs or is modified from what is described in this report or if the site conditions are altered, this report is no longer valid unless Stantec Consulting Ltd. is requested by the Client to review and revise the report to reflect the differing or modified project specifics and/or the altered site conditions.

STANDARD OF CARE: Preparation of this report, and all associated work, was carried out in accordance with the normally accepted standard of care in the state or province of execution for the specific professional service provided to the Client. No other warranty is made.

INTERPRETATION OF SITE CONDITIONS: Soil, rock, or other material descriptions, and statements regarding their condition, made in this report are based on site conditions encountered by Stantec Consulting Ltd. at the time of the work and at the specific testing and/or sampling locations. Classifications and statements of condition have been made in accordance with normally accepted practices which are judgmental in nature; no specific description should be considered exact, but rather reflective of the anticipated material behavior. Extrapolation of in situ conditions can only be made to some limited extent beyond the sampling or test points. The extent depends on variability of the soil, rock and groundwater conditions as influenced by geological processes, construction activity, and site use.

VARYING OR UNEXPECTED CONDITIONS: Should any site or subsurface conditions be encountered that are different from those described in this report or encountered at the test locations, Stantec Consulting Ltd. must be notified immediately to assess if the varying or unexpected conditions are substantial and if reassessments of the report conclusions or recommendations are required. Stantec Consulting Ltd. will not be responsible to any party for damages incurred as a result of failing to notify Stantec Consulting Ltd. that differing site or sub-surface conditions are present upon becoming aware of such conditions.

PLANNING, DESIGN, OR CONSTRUCTION: Development or design plans and specifications should be reviewed by Stantec Consulting Ltd., sufficiently ahead of initiating the next project stage (property acquisition, tender, construction, etc), to confirm that this report completely addresses the elaborated project specifics and that the contents of this report have been properly interpreted. Specialty quality assurance services (field observations and testing) during construction are a necessary part of the evaluation of sub-subsurface conditions and site preparation works. Site work relating to the recommendations included in this report should only be carried out in the presence of a qualified geotechnical engineer; Stantec Consulting Ltd. cannot be responsible for site work carried out without being present.

SYMBOLS AND TERMS USED ON BOREHOLE AND TEST PIT RECORDS

SOIL DESCRIPTION

Terminology describing common soil genesis:

<i>Topsoil</i>	- mixture of soil and humus capable of supporting vegetative growth
<i>Peat</i>	- mixture of visible and invisible fragments of decayed organic matter
<i>Till</i>	- unstratified glacial deposit which may range from clay to boulders
<i>Fill</i>	- material below the surface identified as placed by humans (excluding buried services)

Terminology describing soil structure:

<i>Desiccated</i>	- having visible signs of weathering by oxidization of clay minerals, shrinkage cracks, etc.
<i>Fissured</i>	- having cracks, and hence a blocky structure
<i>Varved</i>	- composed of regular alternating layers of silt and clay
<i>Stratified</i>	- composed of alternating successions of different soil types, e.g. silt and sand
<i>Layer</i>	- > 75 mm in thickness
<i>Seam</i>	- 2 mm to 75 mm in thickness
<i>Parting</i>	- < 2 mm in thickness

Terminology describing soil types:

The classification of soil types are made on the basis of grain size and plasticity in accordance with the Unified Soil Classification System (USCS) (ASTM D 2487 or D 2488). The classification excludes particles larger than 76 mm (3 inches). The USCS provides a group symbol (e.g. SM) and group name (e.g. silty sand) for identification.

Terminology describing cobbles, boulders, and non-matrix materials (organic matter or debris):

Terminology describing materials outside the USCS, (e.g. particles larger than 76 mm, visible organic matter, construction debris) is based upon the proportion of these materials present:

<i>Trace, or occasional</i>	Less than 10%
<i>Some</i>	10-20%
<i>Frequent</i>	> 20%

Terminology describing compactness of cohesionless soils:

The standard terminology to describe cohesionless soils includes compactness (formerly "relative density"), as determined by the Standard Penetration Test N-Value (also known as N-Index). A relationship between compactness condition and N-Value is shown in the following table.

Compactness Condition	SPT N-Value
<i>Very Loose</i>	<4
<i>Loose</i>	4-10
<i>Compact</i>	10-30
<i>Dense</i>	30-50
<i>Very Dense</i>	>50

Terminology describing consistency of cohesive soils:

The standard terminology to describe cohesive soils includes the consistency, which is based on undrained shear strength as measured by *in situ* vane tests, penetrometer tests, or unconfined compression tests.

Consistency	Undrained Shear Strength	
	kips/sq.ft.	kPa
<i>Very Soft</i>	<0.25	<12.5
<i>Soft</i>	0.25 - 0.5	12.5 - 25
<i>Firm</i>	0.5 - 1.0	25 - 50
<i>Stiff</i>	1.0 - 2.0	50 - 100
<i>Very Stiff</i>	2.0 - 4.0	100 - 200
<i>Hard</i>	>4.0	>200

ROCK DESCRIPTION

Terminology describing rock quality:

RQD	Rock Mass Quality
0-25	Very Poor Quality - Very Severely Fractured, Crushed
25-50	Poor Quality- Severely Fractured, Shattered or Very Blocky
50-75	Fair Quality - Fractured, Blocky
75-90	Good Quality - Moderately Jointed, Sound
90-100	Excellent Quality - Intact, Very Sound

Rock quality classification is based on a modified core recovery percentage (RQD) in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be due to close shearing, jointing, faulting, or weathering in the rock mass and are not counted. RQD was originally intended to be done on N-size core; however, it can be used on different core sizes if the bulk of the fractures caused by drilling stresses are easily distinguishable from *in situ* fractures. The terminology describing rock mass quality based on RQD is subjective and is underlain by the presumption that sound strong rock is of higher engineering value than fractured weak rock.

Terminology describing rock mass:

Spacing (mm)	Joint Classification	Bedding, Laminations, Bands
> 6000	Extremely Wide	-
2000-6000	Very Wide	Very Thick
600-2000	Wide	Thick
200-600	Moderate	Medium
60-200	Close	Thin
20-60	Very Close	Very Thin
<20	Extremely Close	Laminated
<6	-	Thinly Laminated

Terminology describing rock strength:

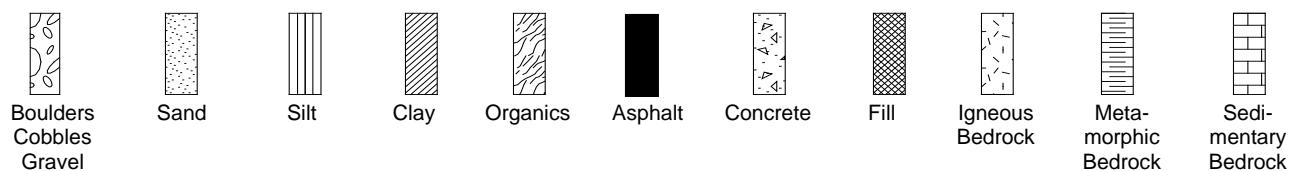
Strength Classification	Grade	Unconfined Compressive Strength (MPa)
Extremely Weak	R0	< 1
Very Weak	R1	1 – 5
Weak	R2	5 – 25
Medium Strong	R3	25 – 50
Strong	R4	50 – 100
Very Strong	R5	100 – 250
Extremely Strong	R6	> 250

Terminology describing rock weathering:

Term	Symbol	Description
Fresh	W1	No visible signs of rock weathering. Slight discolouration along major discontinuities
Slightly Weathered	W2	Discoloration indicates weathering of rock on discontinuity surfaces. All the rock material may be discoloured.
Moderately Weathered	W3	Less than half the rock is decomposed and/or disintegrated into soil.
Highly Weathered	W4	More than half the rock is decomposed and/or disintegrated into soil.
Completely Weathered	W5	All the rock material is decomposed and/or disintegrated into soil. The original mass structure is still largely intact.

Solid Core Recovery (SCR):

Solid core recovery is defined as the cumulative length of all solid (at full diameter) core in the core barrel divided by the length drilled and is recorded as a percentage on a per run basis.


Fracture Index (FI):

Fracture Index is defined as the number of naturally occurring fractures occurring per 0.3 m length of core. The Fracture Index is reported as a simple count of fractures. For > 25 fractures / 0.3 m length, the Fracture Index is reported as >25.

STRATA PLOT

Strata plots symbolize the soil or bedrock description. They are combinations of the following basic symbols. The dimensions within the strata symbols are not indicative of the particle size, layer thickness, etc.

SAMPLE TYPE

SS	Split spoon sample (obtained by performing the Standard Penetration Test)
ST	Shelby tube or thin wall tube
DP	Direct-Push sample (small diameter tube sampler hydraulically advanced)
PS	Piston sample
BS	Bulk sample
WS	Wash sample
HQ, NQ, BQ, etc.	Rock core samples obtained with the use of standard size diamond coring bits.

WATER LEVEL MEASUREMENT

measured in standpipe, piezometer, or well

inferred

RECOVERY

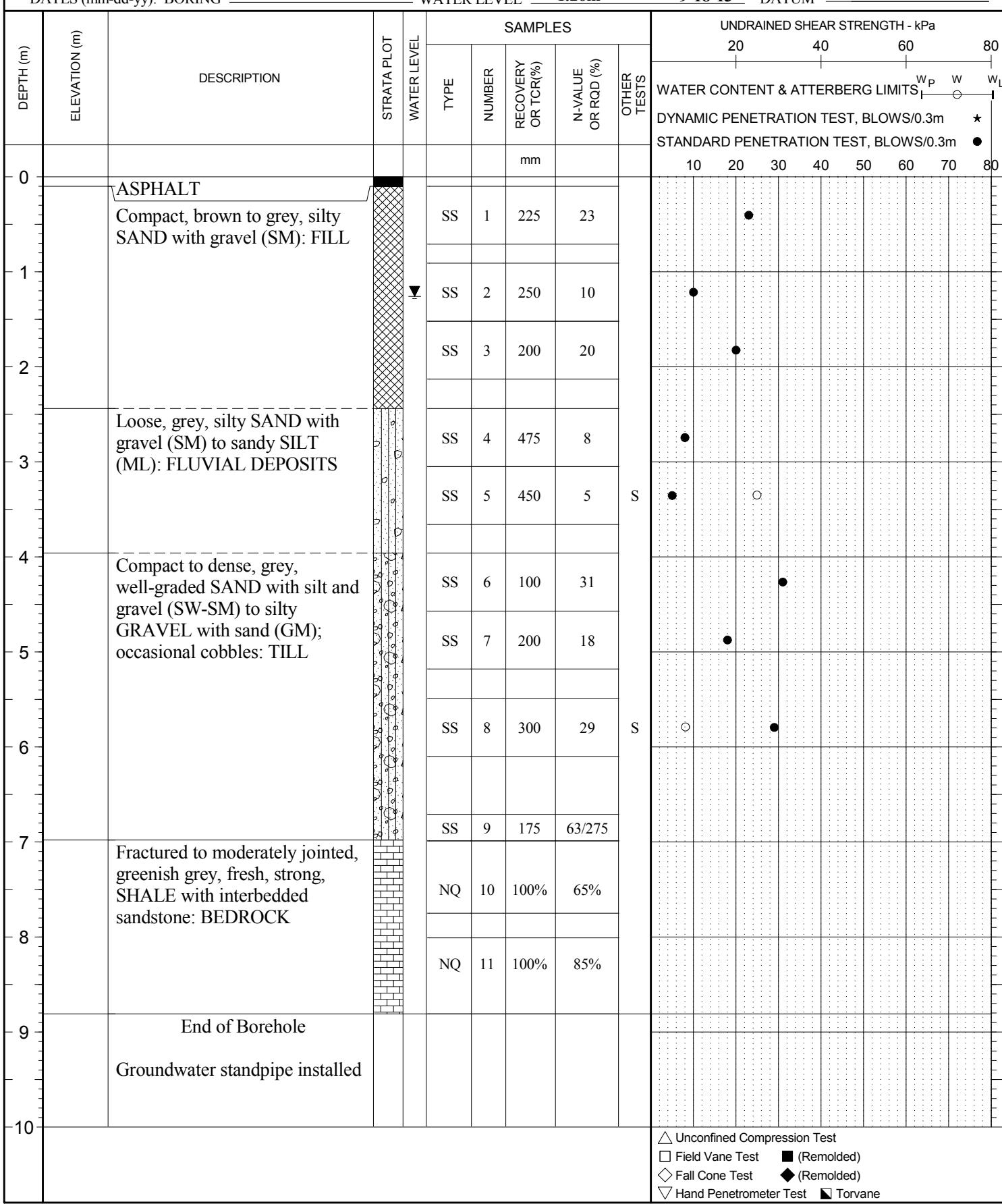
For soil samples, the recovery is recorded as the length of the soil sample recovered. For rock core, recovery (or total core recovery - TCR) is defined as the total cumulative length of all core recovered in the core barrel divided by the length drilled and is recorded as a percentage on a per run basis.

N-VALUE

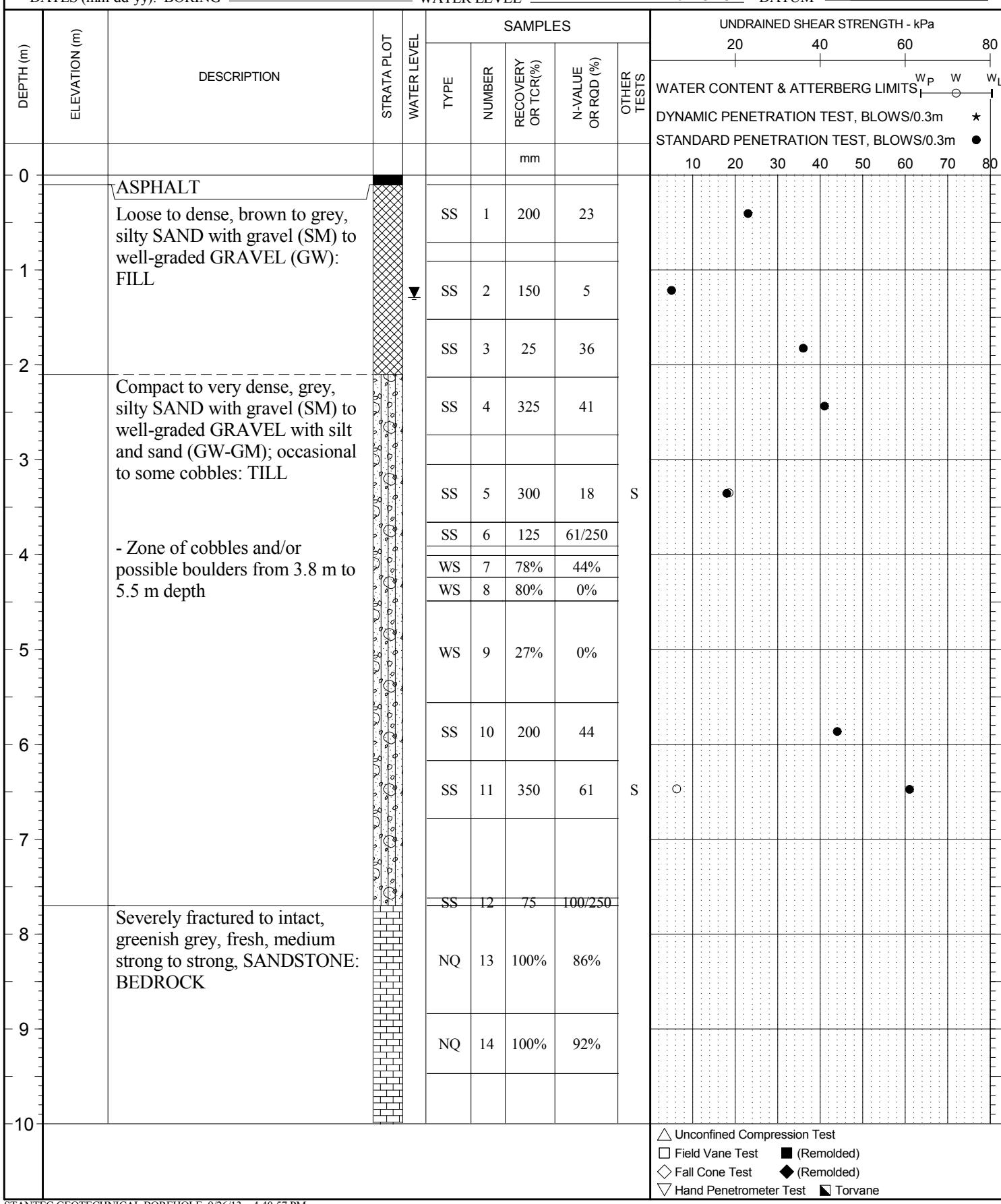
Numbers in this column are the field results of the Standard Penetration Test: the number of blows of a 140 pound (64 kg) hammer falling 30 inches (760 mm), required to drive a 2 inch (50.8 mm) O.D. split spoon sampler one foot (305 mm) into the soil. For split spoon samples where insufficient penetration was achieved and N-values cannot be presented, the number of blows are reported over sampler penetration in millimetres (e.g., 50/75). Some design methods make use of N value corrected for various factors such as overburden pressure, energy ratio, borehole diameter, etc. No corrections have been applied to the N-values presented on the log.

DYNAMIC CONE PENETRATION TEST (DCPT)

Dynamic cone penetration tests are performed using a standard 60 degree apex cone connected to A size drill rods with the same standard fall height and weight as the Standard Penetration Test. The DCPT value is the number of blows of the hammer required to drive the cone one foot (305 mm) into the soil. The DCPT is used as a probe to assess soil variability.


OTHER TESTS

S	Sieve analysis
H	Hydrometer analysis
k	Laboratory permeability
γ	Unit weight
G_s	Specific gravity of soil particles
CD	Consolidated drained triaxial
CU	Consolidated undrained triaxial with pore pressure measurements
UU	Unconsolidated undrained triaxial
DS	Direct Shear
C	Consolidation
Q_u	Unconfined compression
I_p	Point Load Index (I_p on Borehole Record equals $I_p(50)$ in which the index is corrected to a reference diameter of 50 mm)


↓	Single packer permeability test; test interval from depth shown to bottom of borehole
↓	Double packer permeability test; test interval as indicated
○ ↓	Falling head permeability test using casing
▽ ↓	Falling head permeability test using well point or piezometer

BOREHOLE RECORD

 BOREHOLE No. BH-01
 PAGE 1 of 1
 PROJECT No. 140132018
 DRILLING METHOD Diamond
 SIZE NQ
 DATES (mm-dd-yy): BORING 8-27-13 WATER LEVEL 1.26m 9-18-13 DATUM Geodetic

BOREHOLE RECORD

 BOREHOLE No. BH-02
 PAGE 1 of 2
 PROJECT No. 140132018
 DRILLING METHOD Diamond
 SIZE NQ
 DATES (mm-dd-yy): BORING 8-21-13 WATER LEVEL 1.29m 9-18-13 DATUM Geodetic

BOREHOLE RECORD
BOREHOLE No. BH-02PAGE 2 of 2PROJECT No. 140132018DRILLING METHOD DiamondSIZE NQCLIENT Memorial University of NewfoundlandPROJECT Geotechnical Investigation - Proposed MUN Core Sciences BuildingLOCATION Arctic Avenue and Clinch Crescent, St. John's, NLDATES (mm-dd-yy): BORING 8-21-13WATER LEVEL 1.29m

9-18-13

DATUM

Geodetic

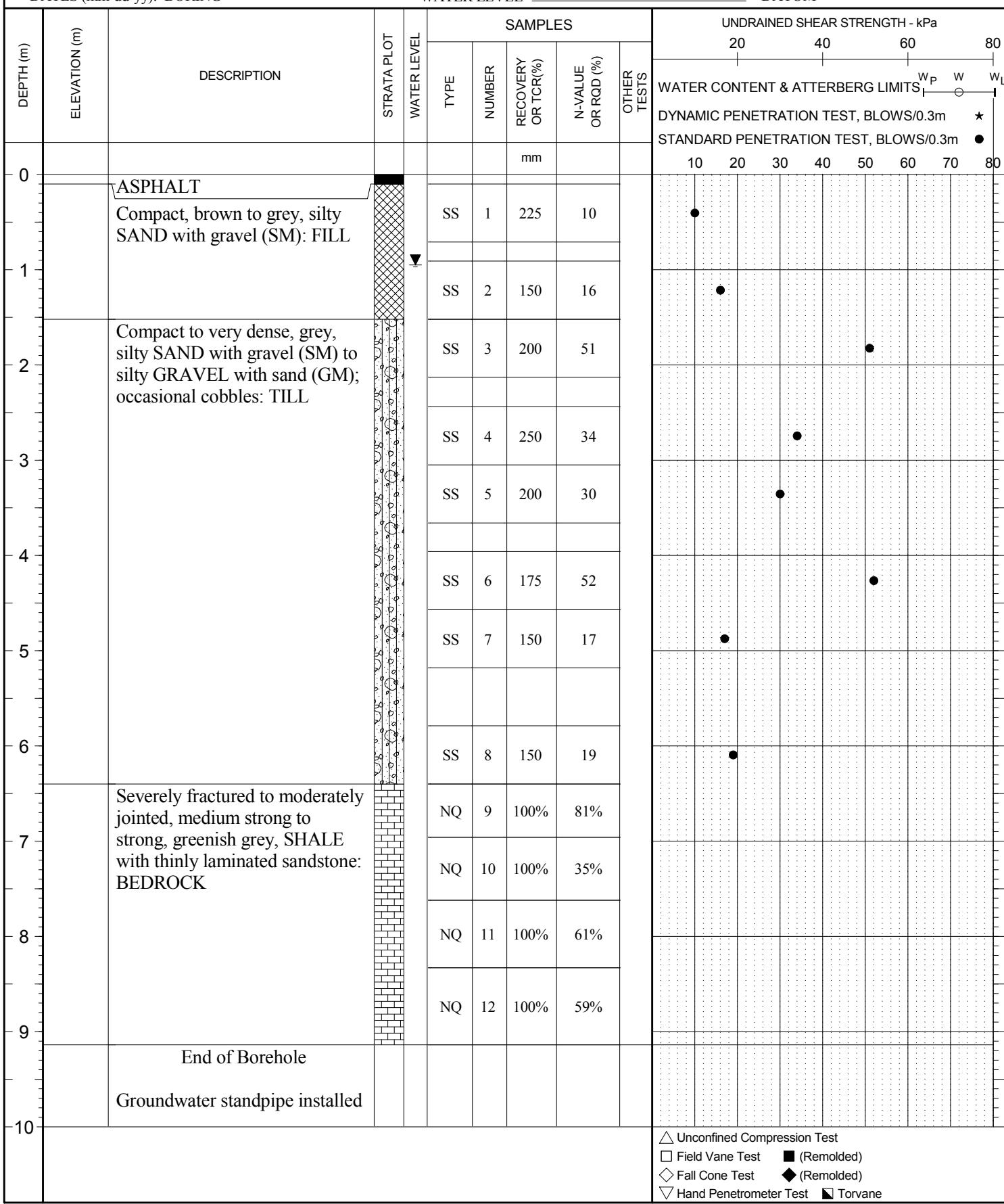
DEPTH (m)	ELEVATION (m)	DESCRIPTION	STRATA PLOT	WATER LEVEL	SAMPLES					UNDRAINED SHEAR STRENGTH - kPa							
					TYPE	NUMBER	RECOVERY OR TCR(%)	N-VALUE OR RQD (%)	OTHER TESTS	20	40	60	80	W _P	W	W _L	
10		Continued from Previous Page				mm											
10			██████		NQ	15	100%	28%									
11		End of Borehole															
11		Groundwater standpipe installed															
12																	
13																	
14																	
15																	
16																	
17																	
18																	
19																	
20																	

- △ Unconfined Compression Test
- Field Vane Test ■ (Remolded)
- ◇ Fall Cone Test ◆ (Remolded)
- ▽ Hand Penetrometer Test ▨ Torvane

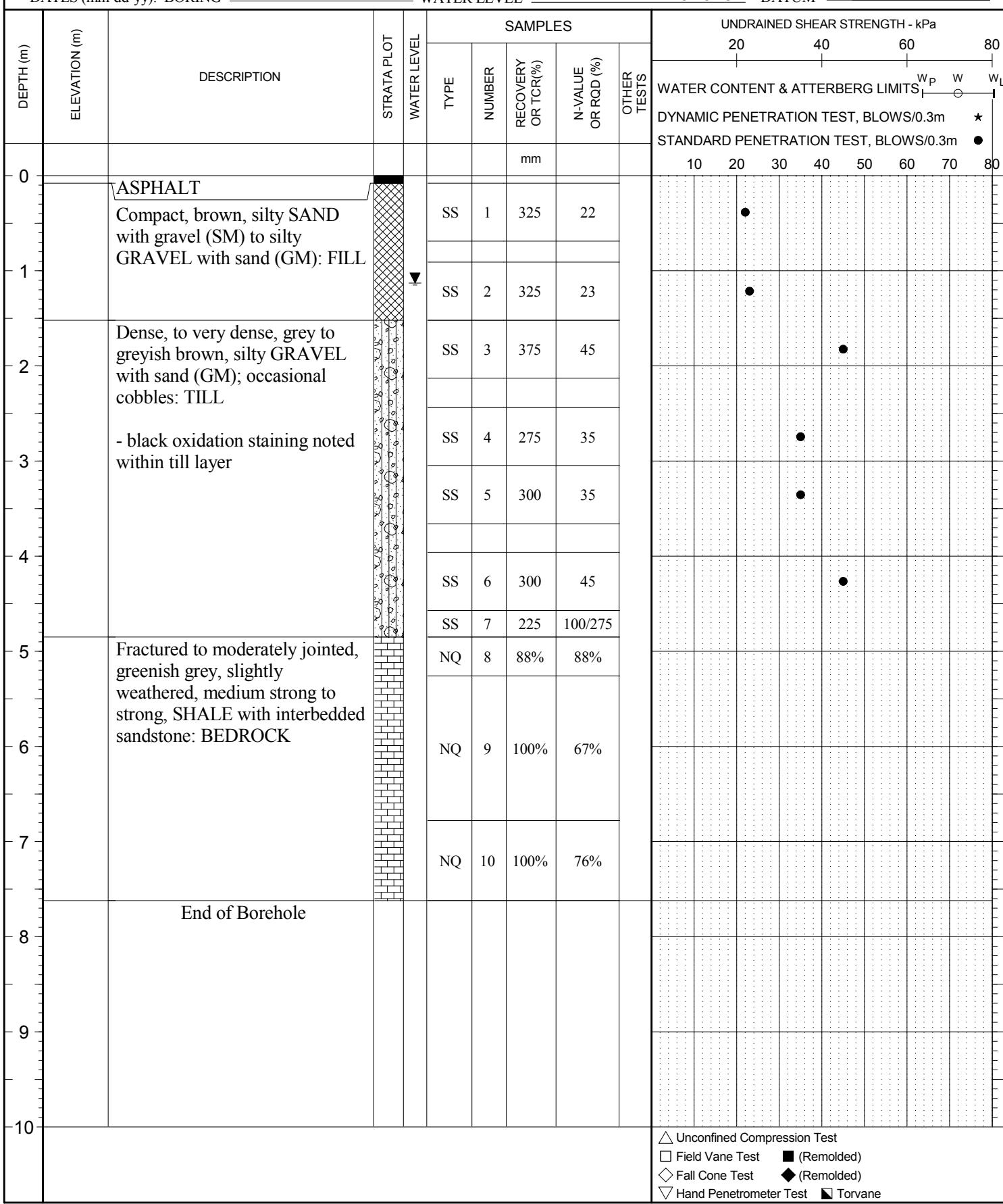
BOREHOLE RECORD

 BOREHOLE No. BH-03
 PAGE 1 of 1
 PROJECT No. 140132018
 DRILLING METHOD Diamond
 SIZE NQ

 CLIENT Memorial University of Newfoundland


 PROJECT Geotechnical Investigation - Proposed MUN Core Sciences Building

 LOCATION Arctic Avenue and Clinch Crescent, St. John's, NL


 DATES (mm-dd-yy): BORING 8-27-13

 WATER LEVEL 0.95m

9-18-13

 DATUM Geodetic

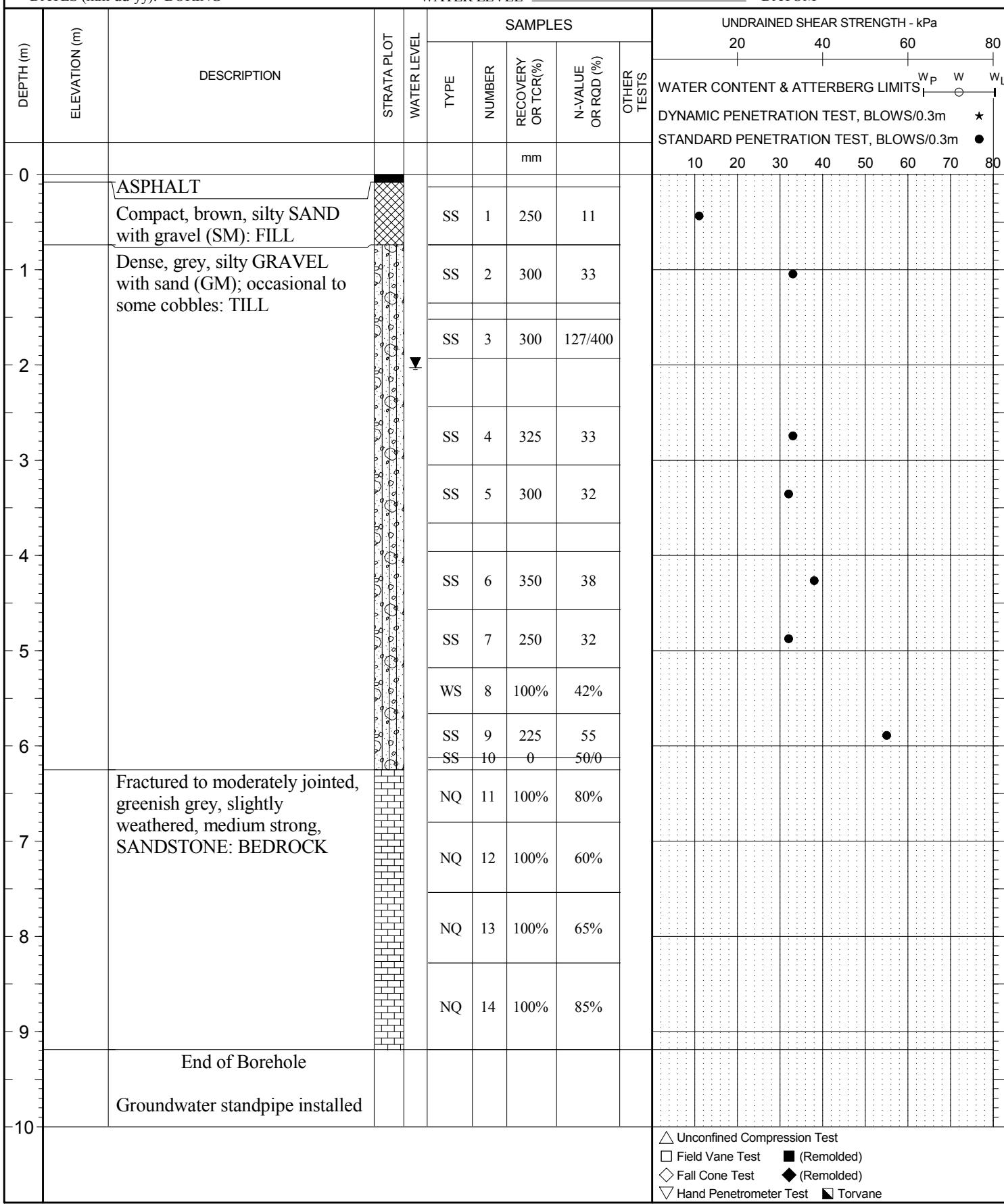
BOREHOLE RECORD

 BOREHOLE No. BH-04
 PAGE 1 of 1
 PROJECT No. 140132018
 DRILLING METHOD Diamond
 SIZE NQ
 DATES (mm-dd-yy): BORING 8-28-13 WATER LEVEL 1.13m 8-28-13 DATUM Geodetic

BOREHOLE RECORD

 BOREHOLE No. BH-05
 PAGE 1 of 1
 PROJECT No. 140132018
 DRILLING METHOD Diamond
 SIZE NQ

 CLIENT Memorial University of Newfoundland


 PROJECT Geotechnical Investigation - Proposed MUN Core Sciences Building

 LOCATION Arctic Avenue and Clinch Crescent, St. John's, NL

 DATES (mm-dd-yy): BORING 8-22-13

 WATER LEVEL 2.03m

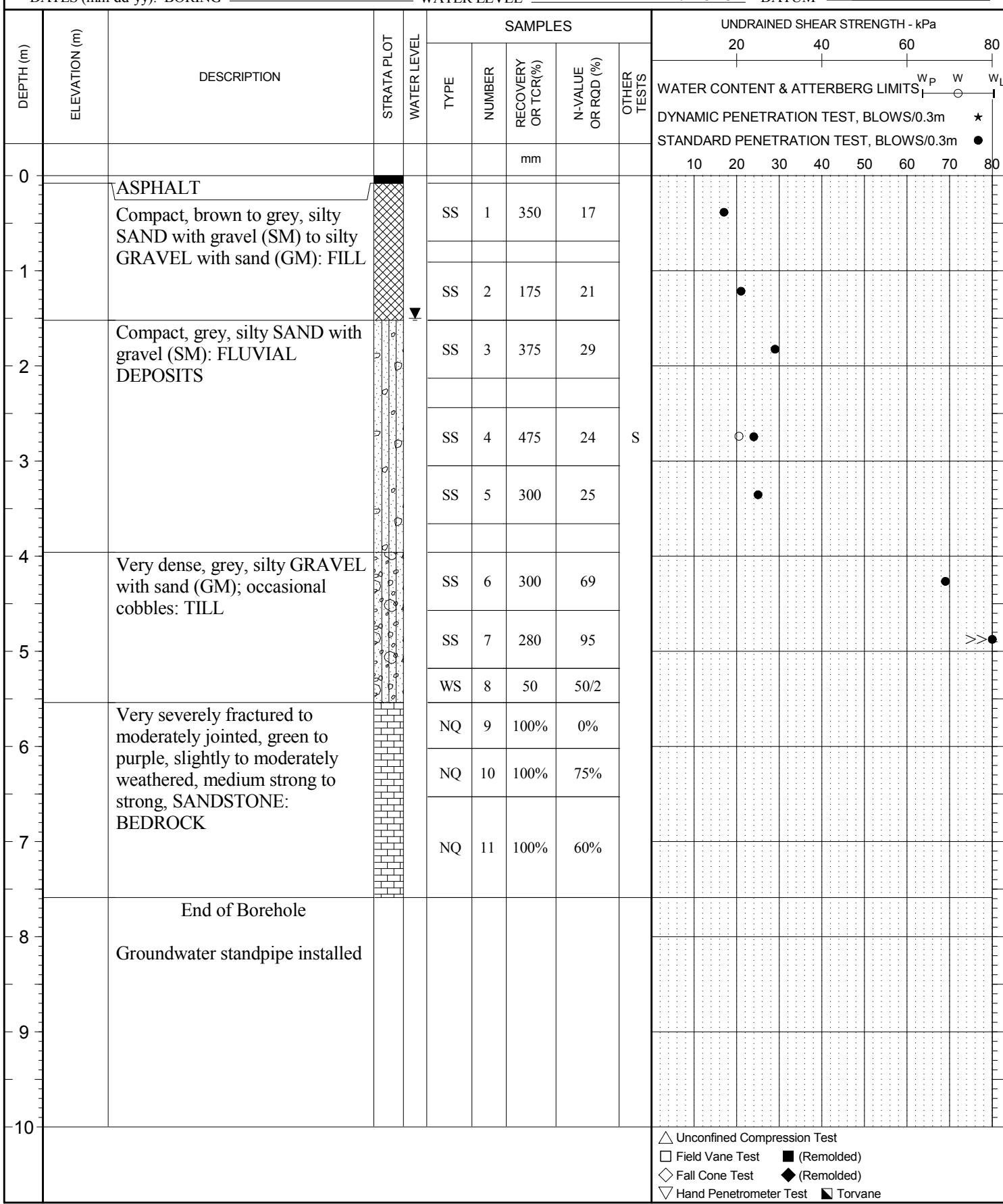
9-18-13

 DATUM Geodetic

BOREHOLE RECORD

BOREHOLE No. BH-06
 PAGE 1 of 1
 PROJECT No. 140132018
 DRILLING METHOD Diamond
 SIZE NQ
 DATUM Geodetic

CLIENT Memorial University of NewfoundlandPROJECT Geotechnical Investigation - Proposed MUN Core Sciences BuildingLOCATION Arctic Avenue and Clinch Crescent, St. John's, NLDATES (mm-dd-yy): BORING 8-26-13WATER LEVEL N/A


BOREHOLE RECORD

 BOREHOLE No. **BH-07**
 PAGE **1** of **1**
 PROJECT No. **140132018**
 DRILLING METHOD **Diamond**
 SIZE **NQ**
 DATUM **Geodetic**

 CLIENT **Memorial University of Newfoundland**

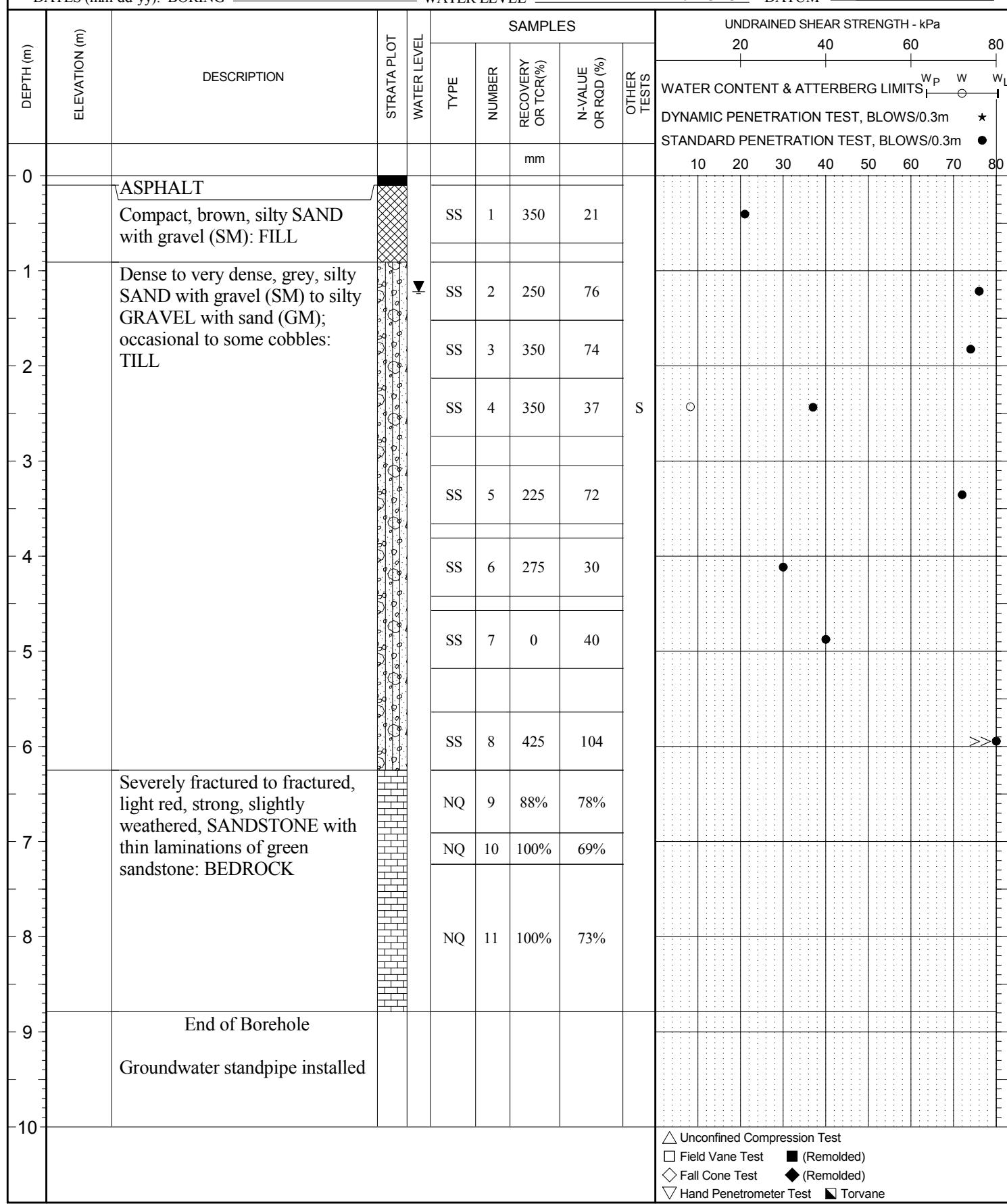
 PROJECT **Geotechnical Investigation - Proposed MUN Core Sciences Building**

 LOCATION **Arctic Avenue and Clinch Crescent, St. John's, NL**

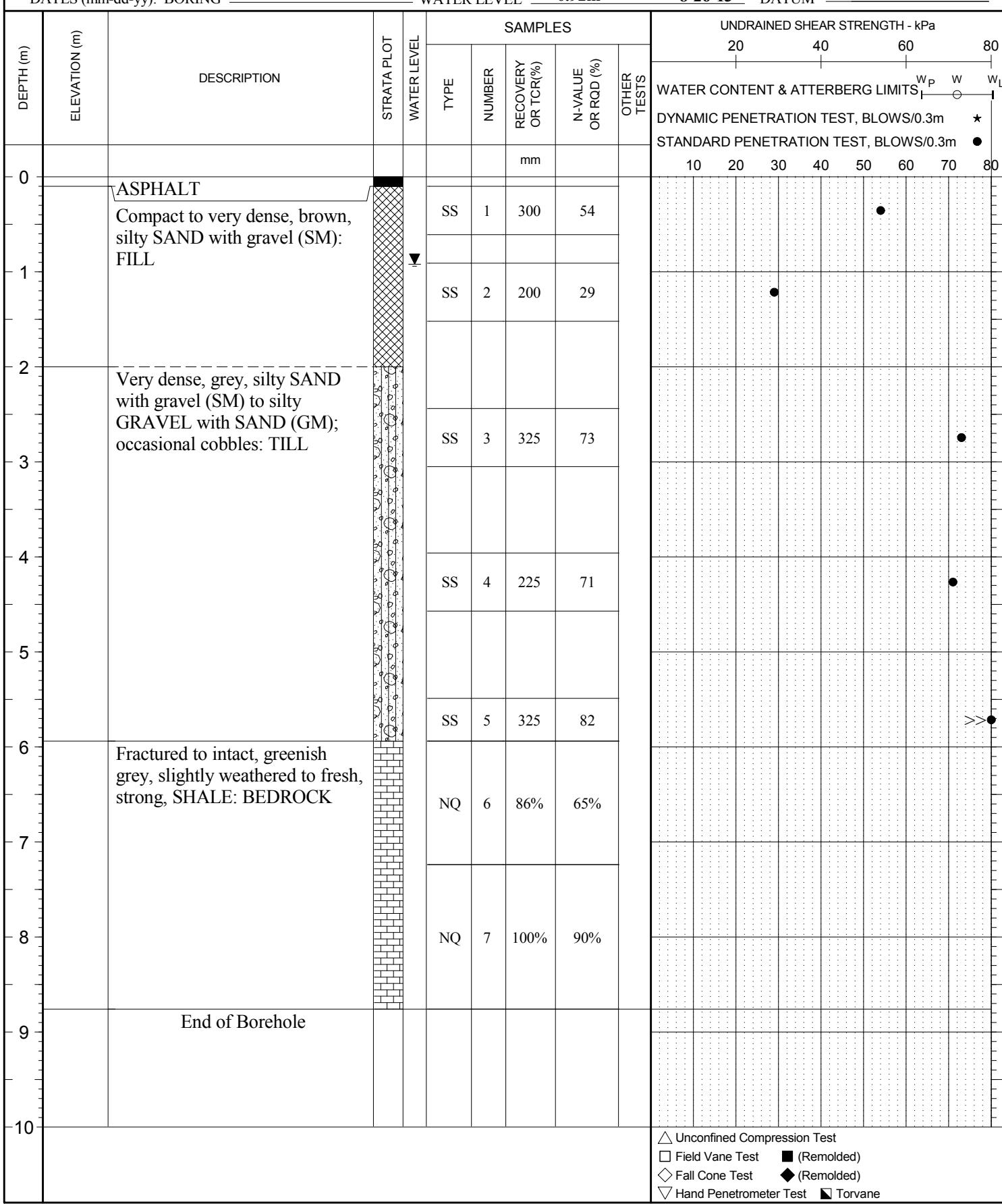
 DATES (mm-dd-yy): BORING **8-28-13** to **8-29-13** WATER LEVEL **1.5m**
9-18-13

BOREHOLE RECORD

 BOREHOLE No. BH-08
 PAGE 1 of 1
 PROJECT No. 140132018
 DRILLING METHOD Diamond
 SIZE NQ
 DATUM Geodetic


 CLIENT Memorial University of Newfoundland

 PROJECT Geotechnical Investigation - Proposed MUN Core Sciences Building


 LOCATION Arctic Avenue and Clinch Crescent, St. John's, NL

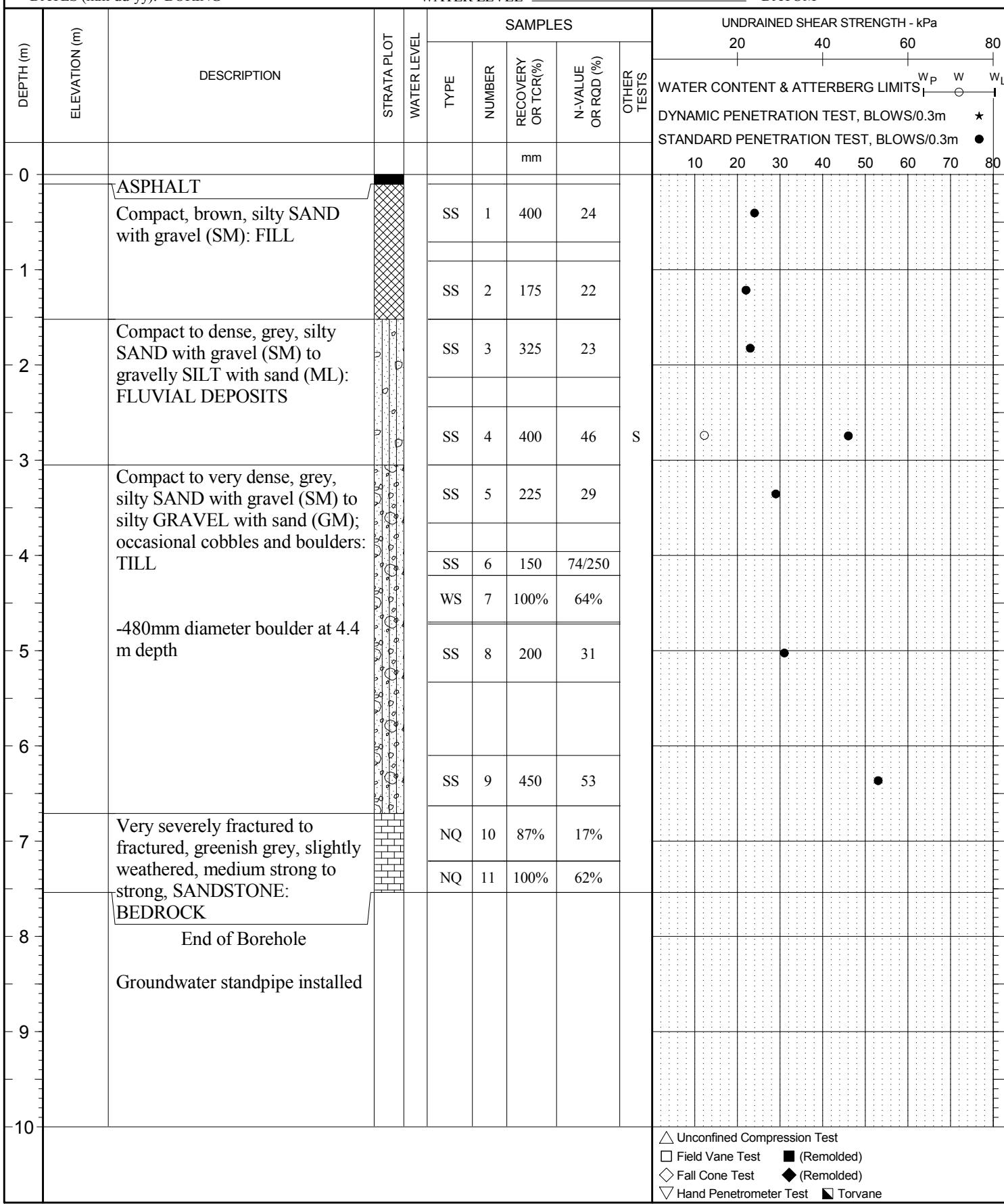
 DATES (mm-dd-yy): BORING 8-22-13 to 8-23-13 WATER LEVEL 1.22m

9-18-13

BOREHOLE RECORD

 BOREHOLE No. BH-09
 PAGE 1 of 1
 PROJECT No. 140132018
 DRILLING METHOD Diamond
 SIZE NQ
 DATES (mm-dd-yy): BORING 8-25-13 to 8-26-13 WATER LEVEL 0.92m 8-26-13 DATUM Geodetic

BOREHOLE RECORD


 BOREHOLE No. **BH-10**
 PAGE **1** of **1**
 PROJECT No. **140132018**
 DRILLING METHOD **Diamond**
 SIZE **NQ**
 DATUM **Geodetic**

 CLIENT **Memorial University of Newfoundland**

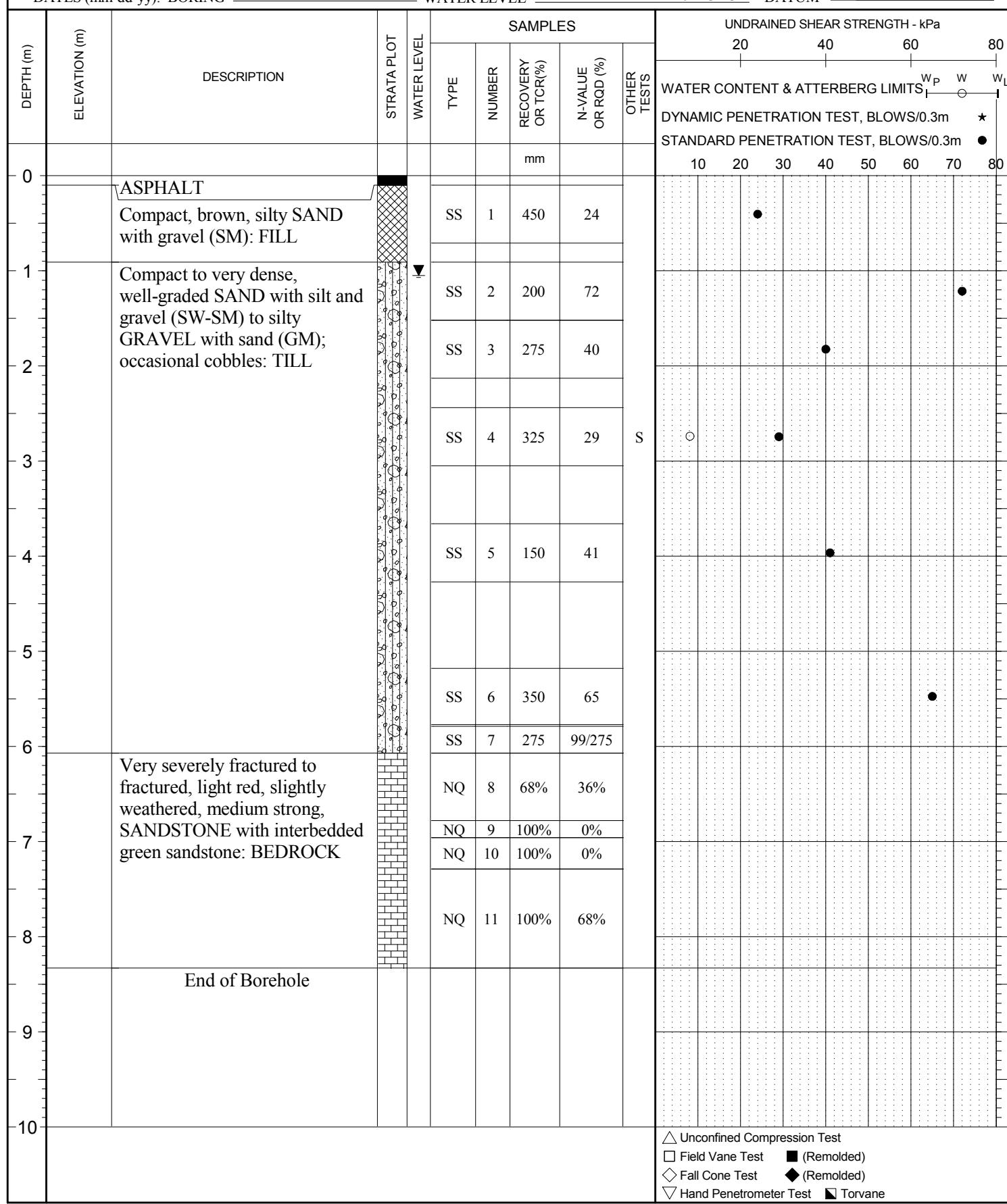
 PROJECT **Geotechnical Investigation - Proposed MUN Core Sciences Building**

 LOCATION **Arctic Avenue and Clinch Crescent, St. John's, NL**

 DATES (mm-dd-yy): BORING **8-29-13**

 WATER LEVEL **N/A**

BOREHOLE RECORD


 BOREHOLE No. **BH-11**
 PAGE **1** of **1**
 PROJECT No. **140132018**
 DRILLING METHOD **Diamond**
 SIZE **NQ**
 DATUM **Geodetic**

 CLIENT **Memorial University of Newfoundland**

 PROJECT **Geotechnical Investigation - Proposed MUN Core Sciences Building**

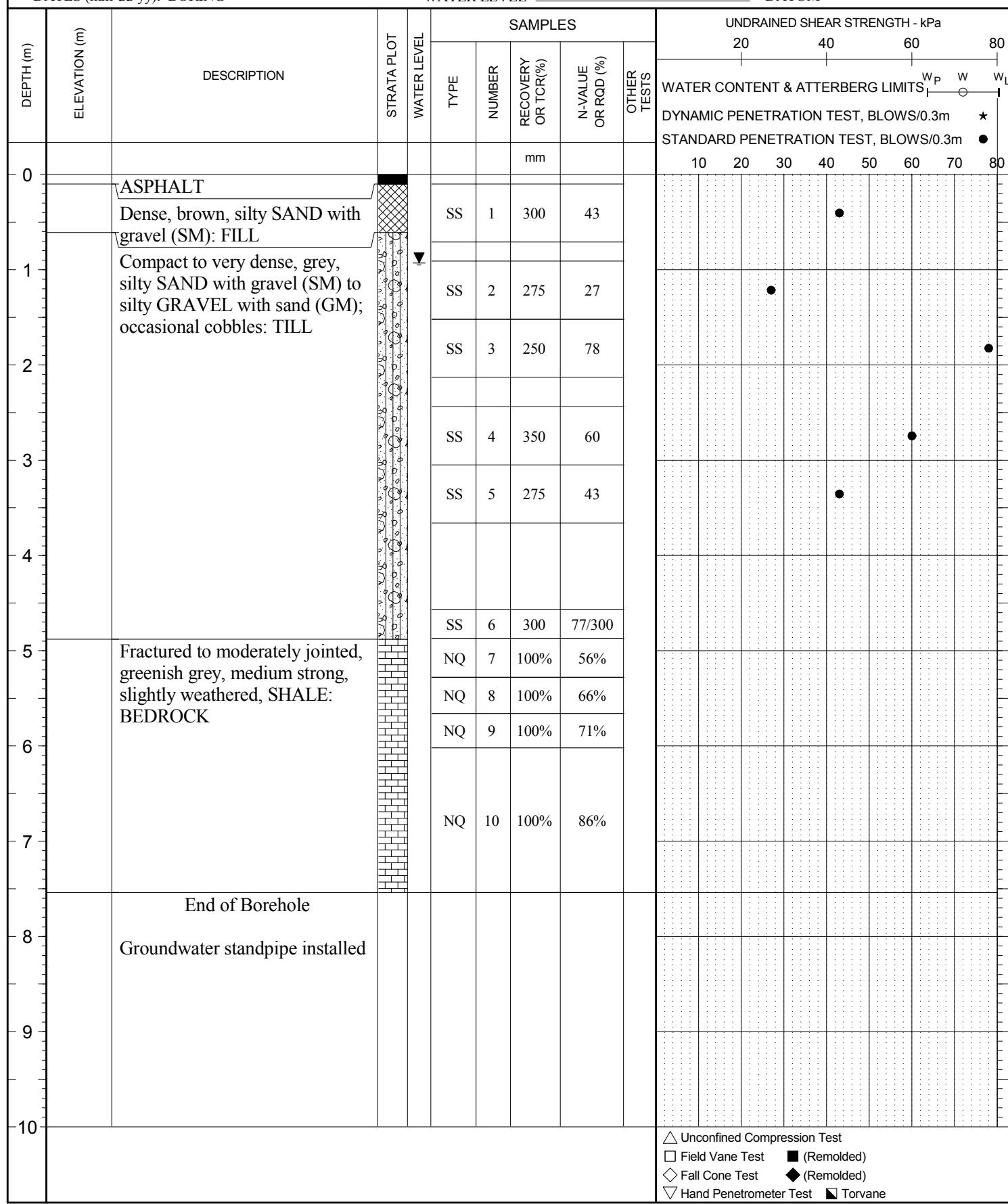
 LOCATION **Arctic Avenue and Clinch Crescent, St. John's, NL**

 DATES (mm-dd-yy): BORING **8-23-13**

 WATER LEVEL **1.05m**
9-18-13

BOREHOLE RECORD

 BOREHOLE No. BH-12
 PAGE 1 of 1
 PROJECT No. 140132018
 DRILLING METHOD Diamond
 SIZE NQ
 DATUM Geodetic


 CLIENT Memorial University of Newfoundland

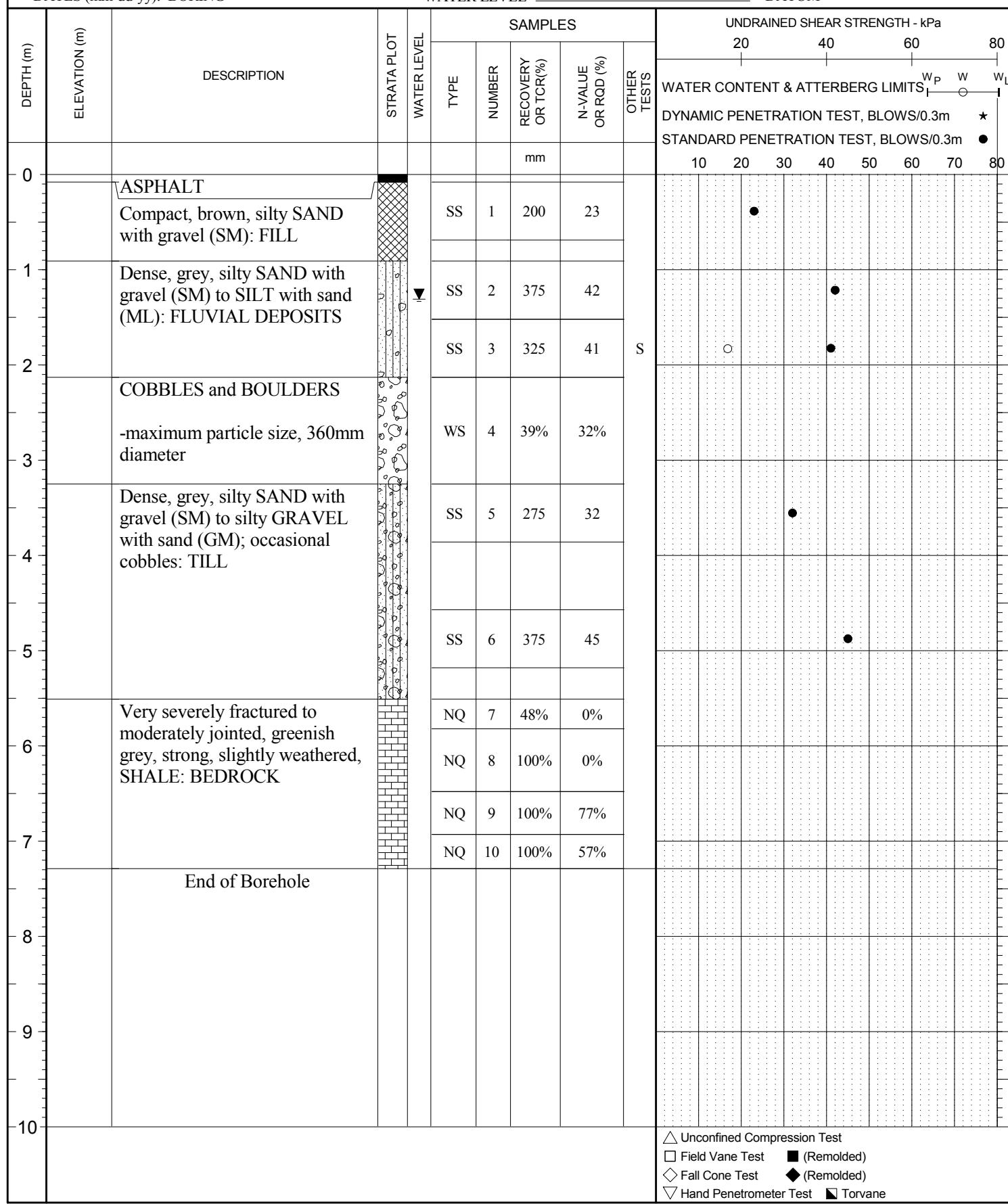
 PROJECT Geotechnical Investigation - Proposed MUN Core Sciences Building

 LOCATION Arctic Avenue and Clinch Crescent, St. John's, NL

 DATES (mm-dd-yy): BORING 8-24-13 to 8-25-13 WATER LEVEL 0.93m

9-18-13

BOREHOLE RECORD


BOREHOLE No. BH-13
 PAGE 1 of 1
 PROJECT No. 140132018
 DRILLING METHOD Diamond
 SIZE NQ
 DATUM Geodetic

 CLIENT Memorial University of Newfoundland

 PROJECT Geotechnical Investigation - Proposed MUN Core Sciences Building

 LOCATION Arctic Avenue and Clinch Crescent, St. John's, NL

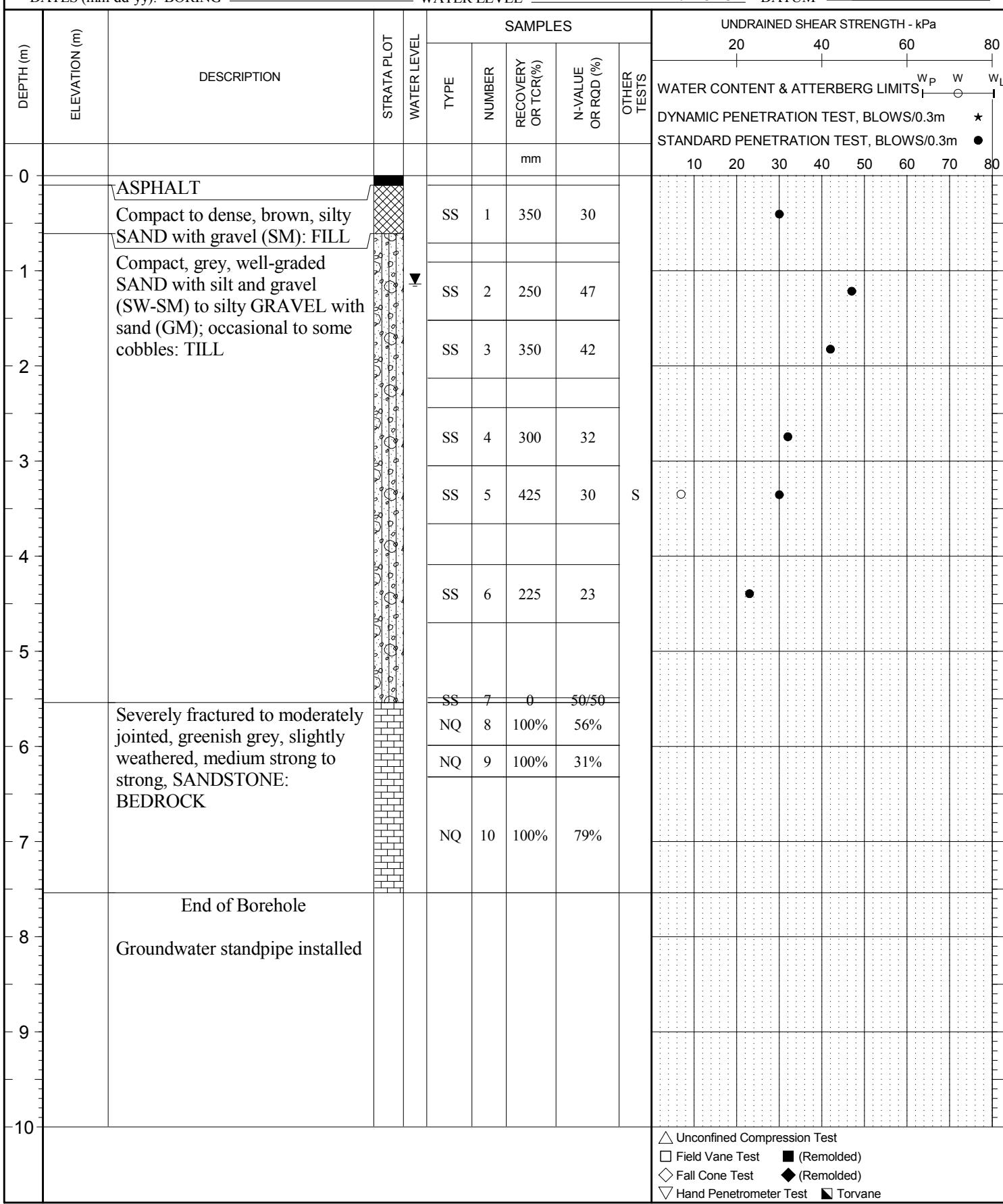
 DATES (mm-dd-yy): BORING 8-29-13

 WATER LEVEL 1.31m
9-18-13

BOREHOLE RECORD

 BOREHOLE No. BH-14
 PAGE 1 of 1
 PROJECT No. 140132018
 DRILLING METHOD Diamond
 SIZE NQ

 CLIENT Memorial University of Newfoundland

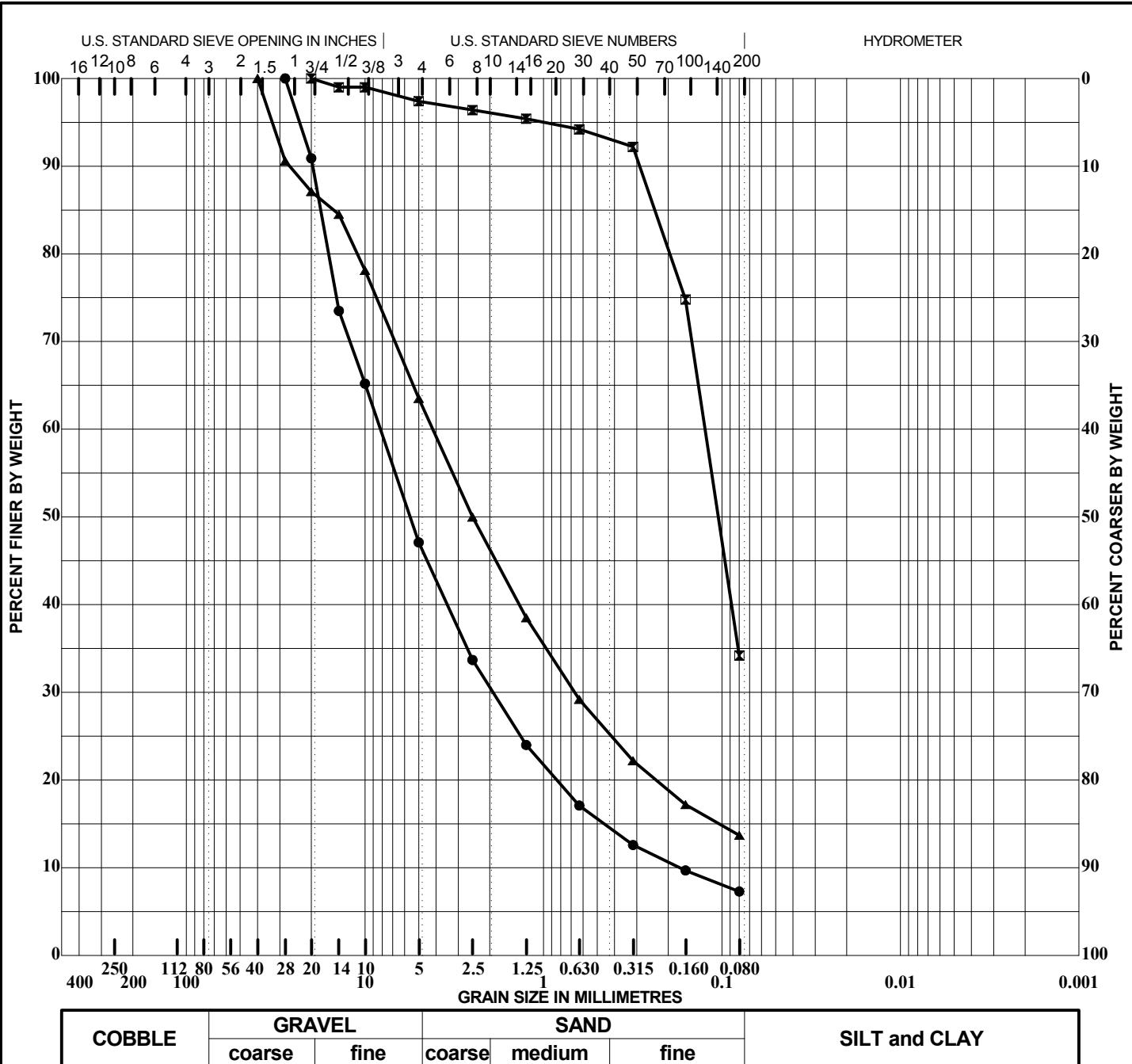

 PROJECT Geotechnical Investigation - Proposed MUN Core Sciences Building


 LOCATION Arctic Avenue and Clinch Crescent, St. John's, NL

 DATES (mm-dd-yy): BORING 8-24-13

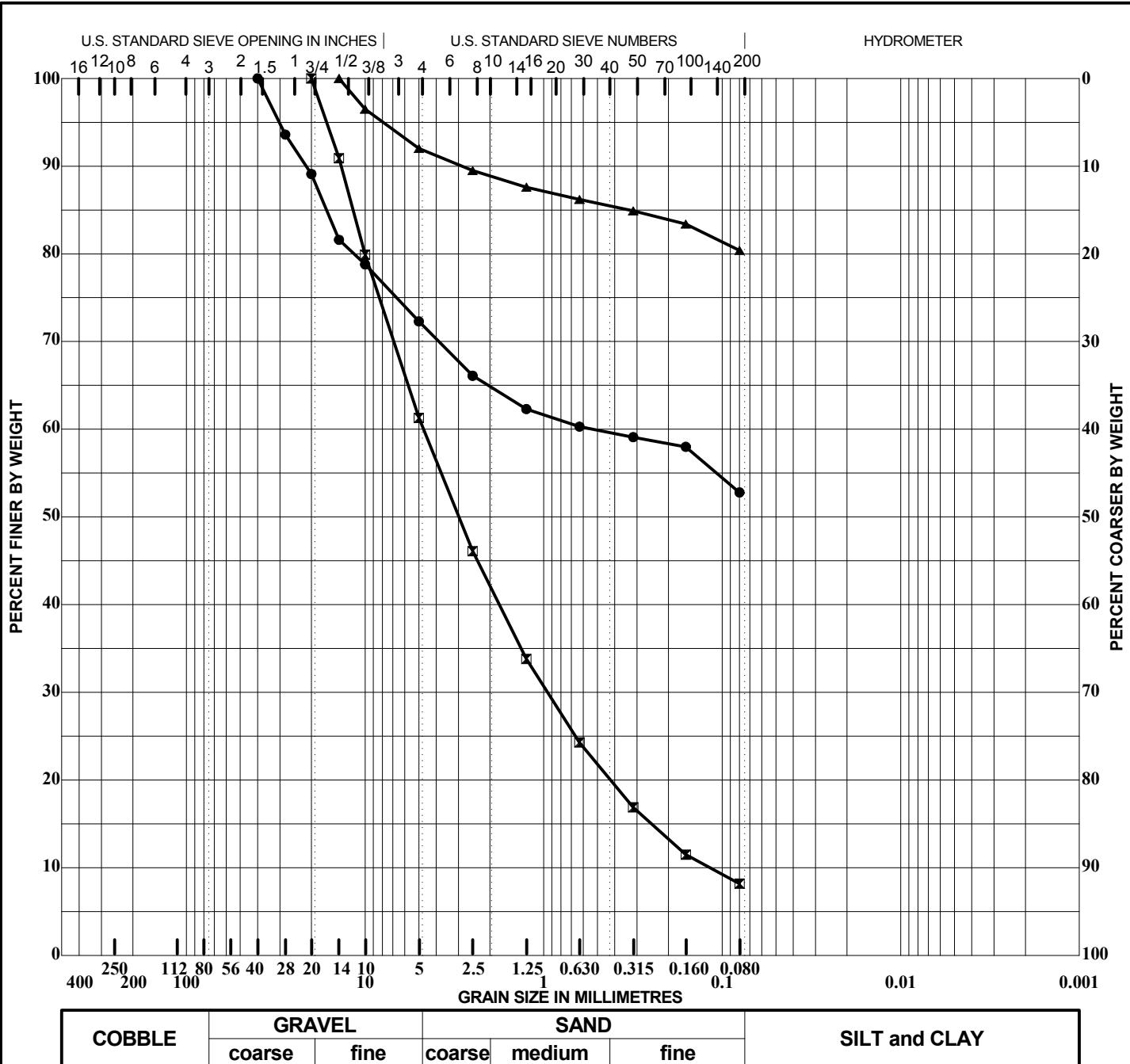
 WATER LEVEL 1.14m

9-18-13


 DATUM Geodetic

Sample	Depth (m)	Description					W%	W _L	W _P	I _P	
●	BH-01 SS5	3.35	Sandy SILT (ML)					25.0			
■	BH-01 SS8	5.79	Well-graded SAND with silt and gravel (SW-SM)					8.2			
▲	BH-02 SS5	3.35	Silty SAND with gravel (SM)					18.6			
Sample	Depth (m)	D100	D60	D30	D10	%Gravel	%Sand	%Silt	%Clay		
●	BH-01 SS5	20.00	0.09			4.3	42.8	52.9			
■	BH-01 SS8	28.00	5.41	0.898		41.7	47.4	10.9			
▲	BH-02 SS5	20.00	0.12			9.6	46.2	44.2			

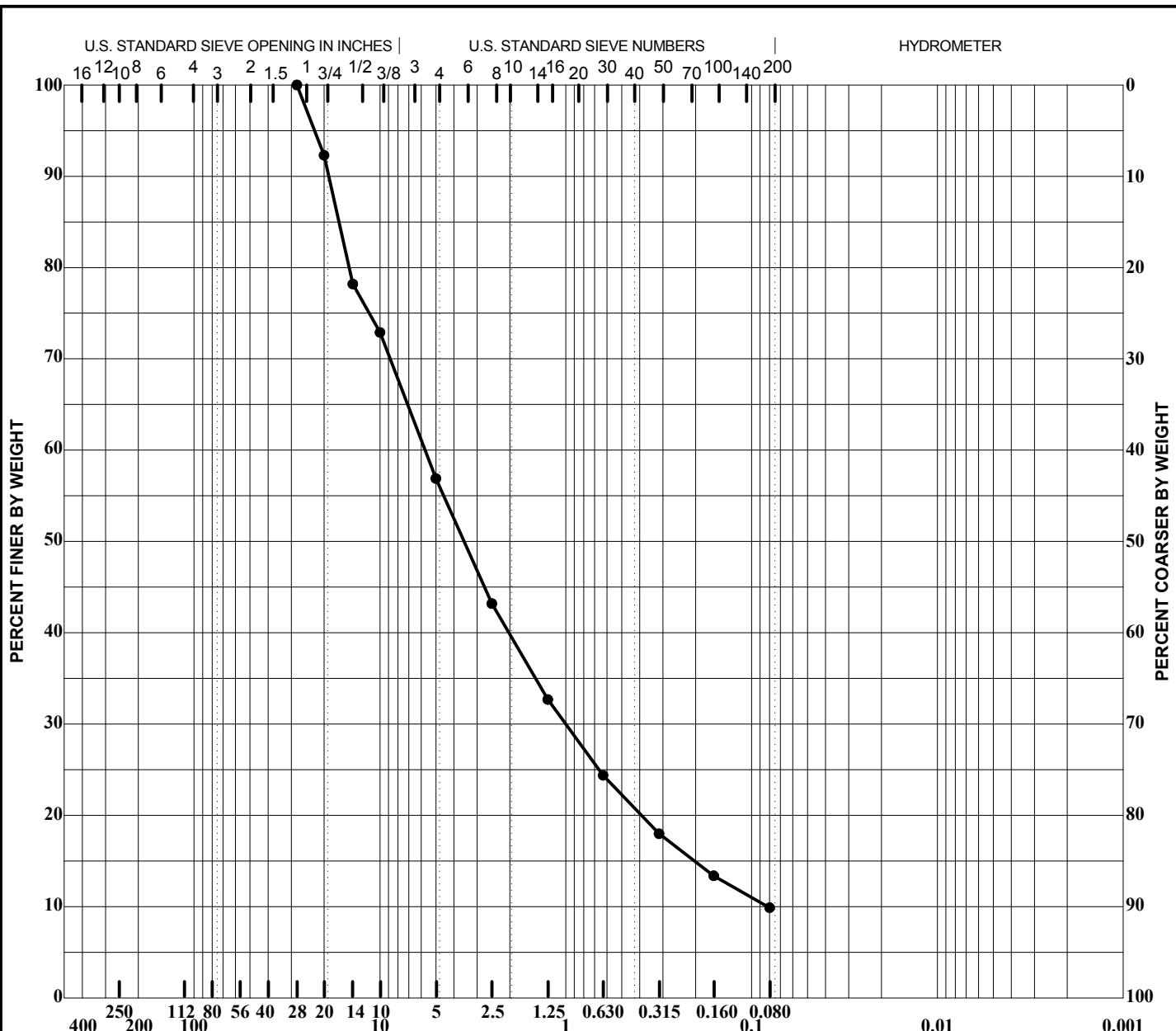
REMARKS:


Stantec	Client: Memorial University of Newfoundland
	Project: Geotechnical Investigation - Proposed MUN Core Sciences Building
	Project No.: 140132018
	Location: Arctic Avenue and Clinch Crescent, St. John's, NL
FIGURE 1 GRADATION CURVES	

Sample	Depth (m)	Description					W%	W _L	W _P	I _P
		coarse	fine	coarse	medium	fine				
●	BH-02 SS11	6.47	Well-graded GRAVEL with silt and sand (GW-GM)					6.3		
×	BH-07 SS4	2.74	Silty SAND (SM)					20.6		
▲	BH-08 SS4	2.43	Silty SAND with gravel (SM)					8.3		
Sample	Depth (m)	D100	D60	D30	D10	%Gravel	%Sand	%Silt	%Clay	
●	BH-02 SS11	28.00	8.19	1.919	0.1716	52.9	39.8	7.3		
×	BH-07 SS4	20.00	0.12			2.6	63.2	34.2		
▲	BH-08 SS4	40.00	4.18	0.668		36.5	49.8	13.7		

REMARKS:

Stantec	Client: Memorial University of Newfoundland
	Project: Geotechnical Investigation - Proposed MUN Core Sciences Building
	Project No.: 140132018
	Location: Arctic Avenue and Clinch Crescent, St. John's, NL
FIGURE 2 GRADATION CURVES	


Sample	Depth (m)	Description					W%	W _L	W _P	I _P
●	BH-10 SS4	2.74	Gravelly SILT with sand (ML)							
			coarse	fine	coarse	medium	fine			
×	BH-11 SS4	2.74	Well-graded SAND with silt and gravel (SW-SM)					8.2		
			coarse	fine	coarse	medium	fine			
▲	BH-13 SS3	1.83	SILT with sand (ML)					16.9		
			coarse	fine	coarse	medium	fine			

REMARKS:

Stantec	Client: Memorial University of Newfoundland
	Project: Geotechnical Investigation - Proposed MUN Core Sciences Building
	Project No.: 140132018
	Location: Arctic Avenue and Clinch Crescent, St. John's, NL

**FIGURE
3**

GRADATION CURVES

COBBLE
GRAVEL

coarse fine coarse medium fine

SAND
SILT and CLAY

Sample	Depth (m)	Description					W%	W _L	W _P	I _P
● BH-14 SS5	3.35	Well-graded SAND with silt and gravel (SW-SM)					7.0			
Sample	Depth (m)	D100	D60	D30	D10	%Gravel	%Sand	%Silt	%Clay	
● BH-14 SS5	3.35	28.00	5.72	1.000	0.0816	43.1	47.0		9.9	

REMARKS:

Client: Memorial University of Newfoundland

Project: Geotechnical Investigation - Proposed MUN Core Sciences Building

Project No.: 140132018

Location: Arctic Avenue and Clinch Crescent, St. John's, NL

FIGURE
4
GRADATION CURVES

PART 1 - ADDENDUM

1.1 TITLE

.1 This Addendum shall be known as:

Addendum 4
TFM-053-25 – CSF-004-23 Primary Data Centre Replacement

.2 The Date of the Addendum is Monday, January 19, 2026

1.2 PRECEDENCE

.1 This amendment to the bid documents is effective immediately.

.2 This Addendum shall form an integral part of the original bid documents and is to be read in conjunction therewith.

.3 The Addendum shall take precedence over previously issued bid documents with which it may prove to be at variance.

1.3 GENERAL

.1 Not Applicable.

1.4 PURPOSE

.1 The purpose of the Addendum is to inform bidders of the changes, deletions and additions to be added to the bid documents.

1.5 CHANGES TO DRAWINGS

.1 Drawing: A100 - GENERAL PROJECT NOTES AND DETAILS

.1 Door 1319A hardware group revised to HG-03 to include credential reader and power supply as requested. Hardware Group HG-02 removed from project. Refer to revised Drawing A100 attached to this addendum.

.2 Drawing: A202 - PARTIAL FLOOR AND EXTERIOR ELEVATION

.1 Staging area layout revised to allow access to both sides of test racks. Workstation relocated as required. Refer to revised Drawing A202 attached to this addendum.

.3 Drawing: A204 - FINISHES PLAN & A401 - INTERIOR DETAILS

.1 Rooms CSF-1319, CSF-1320 & CSF-1320A updated to integral coved epoxy wall bases to replace the rubber bases previously shown in these spaces. Refer to revised Drawings A204 & A401 attached to this addendum.

.4 Drawing: M302 LEVEL 1 - REFRIGERANT PIPING & CONTROLS LAYOUTS
.1 Update Note #5 on M302 to read as follows:
"Refrigerant piping down through new data centre roof structure. Caulk and seal water tight. Refer to Architectural for fire rating and roof penetration details".

.5 Drawing: M304 - ENLARGED FLOOR PLAN – SITE PLAN
.1 Refrigerant piping serving condensing units located within the exterior equipment compound is to be terminated within a weatherproof enclosure. Refer to revised Drawing M304 attached to this addendum

.6 Drawing: M401 - MECHANICAL DETAIL
.1 Detail 5 – EXTERIOR PIPE SUPPORTS has been revised to include space for electrical cable tray. Refer to revised Drawing M401 attached to this addendum

.7 Drawing: E001 - ELECTRICAL LEGEND
.1 Added Graphic Scales

.8 Drawing: E100 - ELECTRICAL SITE PLAN
.1 Supply and install aluminum weatherproof enclosure, 1200mm W x 1200mm L x 1200mm H. To be installed over Condensing Unit conduit and piping as they transition from the underground ductbank to above ground. Sides of enclosure to be core drilled to allow for extension of conduits and piping to mechanical support system. All penetrations to be sealed. Enclosure to have sloped roof and be removable for maintenance. Junction box for transition of electrical conduits from PVC to liquid tight flexible conduits to be installed inside this enclosure.
.2 Supply and install cable tray on mechanical support system for routing of condensing unit power conduits to each unit from the weatherproof enclosure. Cable tray to be fibreglass, Nema 12C rated, 305mm x 100mm, with rung spacing of 305mm. Coordinate with mechanical trade for the mounting of the tray to their supports.

.9 Drawing: E202 - POWER AND SYSTEMS FLOOR PLAN – CORE SCIENCE FACILITY
.1 Data racks in Staging Area CSF-1320 relocated within room.
.2 Detail 1 – Receptacle locations for Data Racks in Staging Area CSF-1320 relocated to accommodate new rack locations.
.3 Detail 1 – Data ground bus relocated within Staging Area CSF-1320. Routing of grounding conductors and conduits extended to suit.
.4 Detail 1 – grounding layout updated to suit new cable tray layout.
.5 Detail 1 – power for card access system added to doors for Rooms CSF-1319 and
.6 CSF-1321.
.7 Detail 2 – Extend cable tray to new data rack locations within Staging Area CSF-1320.

- .8 Detail 2 – Data outlet locations for Data Racks in Staging Area CSF-1320 relocated.
- .9 Detail 2 – Cable tray layout updates. Quantity of trays for PDU power cords reduced. Addition of 153mm cable tray suspended over data racks.
- .10 Drawing: E401 - ENLARGED FLOOR PLANS – DATA CENTRE
 - .1 Detail 2 – Reduced quantity of cable trays for PDU power cords and adjusted layout.
 - .2 Detail 2 – Cable tray for PDU power cords updated to 153mm wide.
 - .3 Add 153mm W X 100mm H basket type cable tray at inside perimeter of larger 2-tier cable tray. Tray to be factory painted white and supported from structural ceiling grid system.
 - .4 An additional section of power busway system rails is required to connect to cable end feeds to avoid interference with cable tray.
- .11 Drawing: E402 - ENLARGED FLOOR PLANS – UPS ROOM AND MECHANICAL EQUIPMENT PLAN
 - .1 Detail 3 – Updated symbol for Fan CSF-EF-35 in UPS Room CSF-1319 from a starter to a disconnect.
 - .2 Updated naming of panels in Keynotes 6 and 7.
- .12 Drawing: E501 - ELECTRICAL DETAILS
 - .1 Updated Detail 4 to show new width of cable tray for PDU power cords. Tray to be 153mm wide.
- .13 Drawing: E502 - ELECTRICAL DETAILS
 - .1 Detail 3 - updated to reflect new layout of cable tray for PDU power cords.
- .14 Drawing: E503 - SITE PLAN DETAILS
 - .1 Detail 2 – updated description of conduits for ductbank detail.
- .15 Drawing: E603 - FIRE ALARM AND DATA RISER DIAGRAM
 - .1 Deleted Detail 4.
 - .2 Detail 3 – updated naming of panels.
 - .3 Detail 3 – updated room name for Fire Alarm Releasing Panel location.
- 1.6 CHANGES TO SPECIFICATION
 - .1 Section 00 01 10 – Table of Contents
 - .1 Update the Table of Contents as follows:
 - .1 Add Section 07 81 00 – Applied Fireproofing.
 - .2 Add Section 08 11 00 – Metal Doors and Frames.
 - .3 Delete Section 08 14 16 – Flush Wood Doors.
 - .4 Add Section 08 80 00 – Glazing.

- .2 Update the specifications as noted above, new sections to add are attached to this addendum, remove sections being deleted as they are no longer required for this project.
- .2 Section 01 91 13.13 – Commissioning (Cx) Requirements
 - .1 Replace specification section with the attached updated version.
- .3 Section 26 25 00.01 – Low Voltage Busways
 - .1 Reference: 2.6 Tap Off Units
 - .1 Revise 2.6.6 as follows:

“2.6.6 Tap off units with receptacles or connectors shall utilize a UL-listed receptacle or connector. The receptacle or connector support standard NEMA or IEC configuration and either bolted to the enclosure or affixed to an electrical cord dropped down from the enclosure. Length the cord drop as required to interface with the provided PDU. Cord drops shall use UL listed strain relief devices. Receptacle or connector tap off units shall come fully assembled and wired from the manufacturer. Field kits for drop cords and receptacles shall not be acceptable.”
 - .2 Reference: 3.5 Testing
 - .1 Revise 3.5.4 as follows:

“3.5.4 Perform infrared scanning of energized busway system under normal building load.”

1.7 QUESTIONS AND RESPONSES

- .1 QUESTION: Based on cabinet drawing, indicates having AI/AO modules, assumption is to just carry in panel as spare as there does not appear to be a need for any analog signals to this panel.
 - .1 ANSWER: AI/AO modules is for future use and is not used on the current scope.
- .2 QUESTION: No spec detailing analog output card. Assumption need to carry 5 AO minimum spare capacity please confirm (29 94 43 2.2.9.2)
 - .1 ANSWER: Correct.
- .3 QUESTION: 26 94 43 2.2.3 Central Processing Unit calls out Schneider Harmony Series Model HMIP67BAEN308ENN00. Assumption is two of these for redundancy. Can this be accomplished with Modicon M580 instead of the Harmony series?
 - .1 ANSWER: Yes, two CPUs are required for redundancy. The proposed Modicon M580 constitutes a change in control architecture from an industrial PC-based control platform to a dedicated programmable automation controller. Acceptance will be conditional upon confirmation that all functional, redundancy, cybersecurity, and lifecycle requirements of the specified system are maintained or improved, and that

visualization, licensing, FAT/SAT, and maintenance impacts are fully addressed.

.4 QUESTION: 26 94 43 2.2.10.1 Ethernet back plane called out as 6 slots + network. Based on number of I/O modules (assuming 3x 16DI, 1xDO, 1xAI, 1xAO + 2 Modbus communication cards for the Generators & UPS) would need at minimum 8 slots. Clause 2.2.2 “Rack shall have sufficient space for the future addition of a minimum of 4 modules” indicates 12 slot backplane. Can we go with a 12 slot back plane or split to two 6 slot backplanes?

.1 ANSWER: Please modify Reference Clause 2.2.10.1.1 to 12 slots as indicated. This can be accomplished by either a single 12-slot backplane or dual 6-slot backplanes.

.5 QUESTION: Digital Input modules are called out as BMXDDI1602 16-input cards, can these be changed to 32 input modules?

.1 ANSWER: Yes.

.6 QUESTION: Network topology inside cabinet indicates 3 managed network switches, can this be accomplished with ring topology between the PLCs and the remote I/O to cut out two of these switches?

.1 ANSWER: The proposed ring topology does not maintain the functional intent, resilience characteristics, cybersecurity zoning, or maintainability of the specified managed switch architecture, the request is rejected. The contractor shall proceed in accordance with the originally specified network design incorporating three (3) managed Ethernet switches within the automation cabinet.

.7 QUESTION: Specification 26 32 13.01 – 2.3.13. Do we need to provide active monitoring for winding temps or just a fused protection circuit for the alternator windings?

.1 ANSWER: Thermistors embedded in stator windings shall be actively monitored by the alternator/generator control system and shall provide high-temperature alarm and shutdown functionality. A fused or sacrificial thermistor protection circuit alone is not acceptable.

.8 QUESTION: The spec calls up both aluminum and galvanized steel for the curtain (2.1.2 and 2.6.1), it also calls up galvanized and powder coat finish. Please Clarify.

.1 ANSWER: Curtain slats to be powder coated aluminum.

.9 QUESTION: It also requests both chain hoist operation and an electrical operator (2.5.2 and 2.6.7). Please clarify.

.1 ANSWER: Door to be manually operated with endless chain.

.10 QUESTION: Can you please confirm if hoarding is required for our area of work within the pavilion?

.1 ANSWER: Hording is not required within the pavilion

.11 QUESTION: Can you please confirm if fireproofing is required for the structural steel elements? There are no specifications for fireproofing in the specifications document.

.1 ANSWER: Fireproofing of the steel elements within the Data Centre and UPS room is required as per the notes on Code Conformance Plan A102. Spec section "07 81 00 – Applied Fireproofing" included in Addendum #4

.12 QUESTION: Please provide Eatons Hot Aisle Containment System drawings as referenced in section 27 11 00 - 2.2.6

.1 ANSWER: Requested drawings are attached to this addendum.

END OF ADDENDUM

AC	ACCORDIAN	COL	COLUMN	FEC	FIRE EXTINGUISHER CABINET	MECH	MECHANICAL	RO	ROUGH OPENING
ADJ	ADJACENT	CONC	CONCRETE	CONT	CONTINUOUS	FIN GR	FINISHED GRADE	ROW	REVERSE OSMOSIS
AFF	ABOVE FINISHED FLOOR	DEMOL	DEMOLITION	FL	FIRE HOSE CABINET	MET	METAL	RWL	RAIN WATER LEADER
AL	ALUMINUM	DEM	DEMOLITION	FR	FIRE RATED	MIN	MINIMUM	SCW	SOLID CORE WOOD
APPROX	APPROXIMATE	DIA	DIAMETER	GALV	GALVANIZED	MISC	MISCELLANEOUS	SIM	SIMILAR
ARCH	ARCHITECTURAL	DR	DOOR	GYP BD	GYPSUM BOARD	MLWK	MILLWORK	SG	SLIDING GRILLE
BD	BOARD	DWG	DRAWING	HIC	HOT & COLD WATER	MM	MASONRY	SS	SECTIONAL OVERHEAD
BF	BARRIER FREE	EA	EXTERIOR INSULATION	HM	HOLLOW METAL INSULATED	NIC	NOT TO SCALE	STC	STAINLESS STEEL
BOL	BOLTED	EIFS	FIN SYSTEM	ID	HORIZONTAL	OH	OVER HEAD	TIO	SOUND TRANSMISSION
C/W	COMPLETE WITH	ELEV	ELEVATION	INS	INSIDE DIAMETER	OC	ON CENTER	TOC	TOP OF CURB
CG	CORNER GUARD	ELEC	ELECTRICAL	INT	INTERIOR	OD	OUTSIDE DIAMETER	TOS	TOP OF STEEL
CJ	CONSTRUCTION JOINT	EW	EYEWASH	LAM	LAMINATED	PB	POWER DOOR OPERATOR	TYP	TYPICAL
CL	CENTRE LINE	EQ	EQUAL	MAX	MAXIMUM	PLAM	PLASTIC LAMINATED	U/S	UNDERSIDE
CLG	CEILING	EW	EYEWASH	PSF	PRESSED STEEL FRAME	PSF	PRESSED STEEL FRAME	UNO	UNLESS NOTED OTHERWISE
CLR	CLEAR	EXIST	EXISTING	RCF	REFLECTED CEILING PLAN	RCF	REFLECTED CEILING PLAN	WC	WASHROOM
CMP	COMPOSITE METAL PANEL	EXP JT	EXPANSION JOINT	RD	ROOF DRAIN	RD	ROOF DRAIN	WD	WOOD
CMU	CONCRETE MASONRY UNIT	EXT	EXTERIOR	FE	FIRE EXTINGUISHER			WRT	WITH RESPECT TO
COJ	CONFIRM ON JOB								

5 ABBREVIATIONS

A100 1:1

GENERAL DOOR / FRAME NOTES

- EXISTING FLOORS MAY BE UNLEVEL REQUIRING DOORS TO BE UNDERCUT TO SUIT SITE CONDITIONS. IN ALL CASES LIMIT THE UNDERCUT TO 6MM ABOVE THE HIGHEST POINT OF FLOOR.
- SEE PARTITION TAG FOR FIRE RATING OF WALL ASSEMBLIES. P_x20 DENOTES A 20 MINUTE RATED WALL ASSEMBLY. 45 DENOTES 45 MINUTES, AND SO FORTH.
- PROVIDE FIRE RATED DOOR ASSEMBLIES IN FIRE RATED WALL ASSEMBLIES AS FOLLOWS (NOTE: RATINGS SHOWN ARE THE MINIMUM REQUIRED):

WALL RATING	-	DOOR RATING
NON RATED	-	0 MIN
45 MIN	-	45 MIN
60 MIN	-	45 MIN
90 MIN	-	60 MIN
120 MIN	-	90 MIN

- FOR GLAZED DOORS AND FRAMES, PROVIDE CLEAR INSULATED SAFETY GLASS UNITS LOCATED BETWEEN HEATED AND UNHEATED SPACES. CLEAR FIRE RATED GLASS WHEN LOCATED IN FIRE RATED ASSEMBLIES, AND CLEAR SAFETY GLASS IN ALL OTHER LOCATIONS; UNLESS OTHERWISE NOTED.
- PROVIDE FIRE RATED TYPE LOUVERS WHERE LOUVERS ARE LOCATED IN FIRE RATED DOOR ASSEMBLIES.
- SEE DOOR SCHEDULE FOR DOOR AND FRAME PAINT / STAIN / LAMINATE COLOUR, UNLESS OTHERWISE NOTED.
- WHERE NEW DOORS AND OR HARDWARE ARE TO BE INSTALLED IN EXISTING PRESSED STEEL FRAME, MAKE ALL NECESSARY MODIFICATIONS TO THE FRAMES TO ACCOMMODATE THE SPECIFIED HARDWARE. PROVIDE INFILL PLATES WHERE REDUNDANT CUTOUTS ARE VISIBLE AND PROVIDE APPROPRIATE ESCUTCHEON PLATES TO COVER ANY VISIBLE IMPERFECTIONS ON THE LATCH SIDE. ENSURE THE INTEGRITY OF REQUIRED REINFORCEMENT AND PREPARE FRAMES TO RECEIVE SPECIFIED FINISH.
- INSTALL DOOR FRAMES SHOWN IMMEDIATELY ADJACENT TO CORNERS SUCH THAT THE DISTANCE FROM THE INSIDE FACE OF THE DOOR FRAME TO THE FACE OF THE ADJACENT WALL IS 100MM UNO.
- REFER TO SPECIFICATION FOR HARDWARE GROUPS.

GENERAL DOOR FRAME NOTES

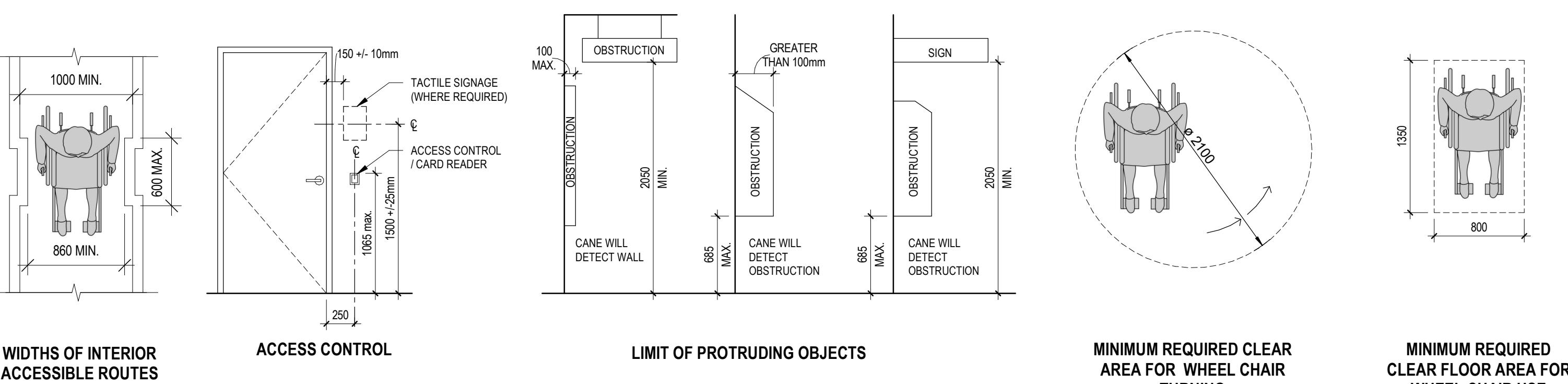
A100 1:1

HG01			HG02					
No. of	COMPONENT	SIZE	FINISH	No. of	COMPONENT	SIZE	FINISH	
6 EA	HINGE	4.5 X 4	652	6 EA	HINGE	4.5 X 4	652	
1 EA	STOREROOM LOCK		626 SCH	2 EA	MANUAL FLUSH BOLT	626 SCH	US26D	
1 EA	ELECTRIC STRIKE	12/24 VAC/VDC		1 EA	DUST PROOF STRIKE		626	
1 EA	SURFACE CLOSER		689	1 EA	STOREROOM LOCK		626	
1 EA	KICK PLATE	250mm X 38mm	630	1 EA	OH STOP		652	
1 EA	GASKETING	x door width x (2) door height	BK	1 EA	SURFACE CLOSER		689	
1 EA	ASTRAGAL	x (2) door height	AA	1 EA	MOUNTING PLATE		689	
1 EA	CREDENTIAL		BY GENERAL CONTRACTOR	2 EA	KICK PLATE	250mm X 38mm	630	
1 EA	READER/CONTROLLER			1 EA	GASKETING	x door width x (2) door height	BK	
1 EA	POWER SUPPLY		LGR	1 EA	ASTRAGAL	x (2) door height	AA	
2 EA	FLOOR STOP			1 EA	CREDENTIAL		BY GENERAL CONTRACTOR	
MODE OF OPERATION:				1 EA	POWER SUPPLY		LGR	

A PERSON CAN ENTER THRU THE DOOR WITH KEY OR BY PRESENTING THEIR CREDENTIAL TO THE READER WHICH WILL RETRACT KEEPER ON ELECTRIC STRIKE AND ALLOW THE DOOR TO BE OPENED. FREE EGRESS AT ALL TIMES

HG03			HG04					
No. of	COMPONENT	SIZE	FINISH	No. of	COMPONENT	SIZE	FINISH	
6 EA	HINGE	4.5 X 4	652	6 EA	HINGE	4.5 X 4	652	
2 EA	MANUAL FLUSH BOLT	652	US26D	2 EA	MANUAL FLUSH BOLT	626 SCH	US26D	
1 EA	ELECTRIC STRIKE	12/24 VAC/VDC		1 EA	ELECTRIC STRIKE	12/24 VAC/VDC		
1 EA	STOREROOM LOCK		626 SCH	1 EA	STOREROOM LOCK		626 SCH	
1 EA	OH STOP		652	1 EA	OH STOP		652	
1 EA	SURFACE CLOSER		689	1 EA	SURFACE CLOSER		689	
1 EA	MOUNTING PLATE		689	1 EA	MOUNTING PLATE		689	
2 EA	KICK PLATE	250mm X 38mm	630	2 EA	KICK PLATE	250mm X 38mm	630	
1 EA	GASKETING	x door width x (2) door height	BK	1 EA	GASKETING	x door width x (2) door height	BK	
1 EA	ASTRAGAL	x (2) door height	AA	1 EA	ASTRAGAL	x (2) door height	AA	
1 EA	CREDENTIAL		BY GENERAL CONTRACTOR	1 EA	POWER SUPPLY		LGR	
1 EA	READER/CONTROLLER			1 EA	POWER SUPPLY		LGR	
1 EA	MODE OF OPERATION:			1 EA	MODE OF OPERATION:			

A PERSON CAN ENTER THRU THE DOOR WITH KEY OR BY PRESENTING THEIR CREDENTIAL TO THE READER WHICH WILL RETRACT KEEPER ON ELECTRIC STRIKE AND ALLOW THE DOOR TO BE OPENED. FREE EGRESS AT ALL TIMES. DOORS REQUIRED TO SWING FULL 180°


HG05			HG06					
No. of	COMPONENT	SIZE	FINISH	No. of	COMPONENT	SIZE	FINISH	
3 EA	HINGE	4.5 X 4	652	3 EA	HINGE	4.5 X 4	652	
1 EA	STOREROOM LOCK		626 SCH	1 EA	STOREROOM LOCK		626 SCH	
1 EA	SURFACE CLOSER		689	1 EA	PUSH/PULL BAR		630	
1 EA	KICK PLATE	250mm X 38mm	630	1 EA	SURFACE CLOSER		689	
1 EA	GASKETING	x door width x (2) door height	BK	1 EA	KICK PLATE	250mm X 38mm	630	
1 EA	FLOOR STOP			1 EA	GASKETING	x door width x (2) door height	BK	
MODE OF OPERATION:				1 EA	FLOOR STOP			

A PERSON NEEDS A KEY TO ENTER SPACE FROM CORRIDOR SIDE. FREE EGRESS AT ALL TIMES IN DIRECTION OF EXIT.

DOOR HARDWARE GROUPS

A100 1:1

ALL BARRIER FREE REQUIREMENTS TO MEET CSA B651-18 MINIMUM

A - DETAIL
B - LOCATION/DRAWING No.
C - DRAWING No.

No. REVISION DATE
1 ISSUED FOR ADDENDUM NO. 4 2024.01.15
0 ISSUED FOR TENDER 2025.09.11
GENERAL NOTES

1. DRAWINGS TO BE READ AS A SET.
2. DO NOT SCALE FROM DRAWINGS
3. THE CONTRACTOR IS TO VERIFY ALL DIMENSIONS AND SITE CONDITIONS PRIOR TO SUBMISSION OF TENDERS
4. ALL DEFICIENCIES FOUND IN THIS DRAWING IS TO BE BROUGHT TO THE ATTENTION OF THE FACILITIES ENGINEERING AND DEVELOPMENT OFFICE OF THE DEPARTMENT OF FACILITIES MANAGEMENT, MEMORIAL UNIVERSITY OF NEWFOUNDLAND PRIOR TO THE SUBMISSION OF THE TENDERS.

Permit/Seal
NEWFOUNDLAND AND LABRADOR
MEMBER
John Henry Hancock, NLAA
Expires Dec 31, 2026
Date: 2026-01-15
LICENCED TO PRACTICE
MEMPHIS
ASSOCIATION OF ARCHITECTS

STANTEC ARCHITECTURE
141 KELSEY DRIVE
ST. JOHNS, NL A1B 0L2
Tel: (709) 576-1458 • www.stantec.com
Copyright Reserved
The Copyright to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay.

**MEMORIAL
UNIVERSITY**

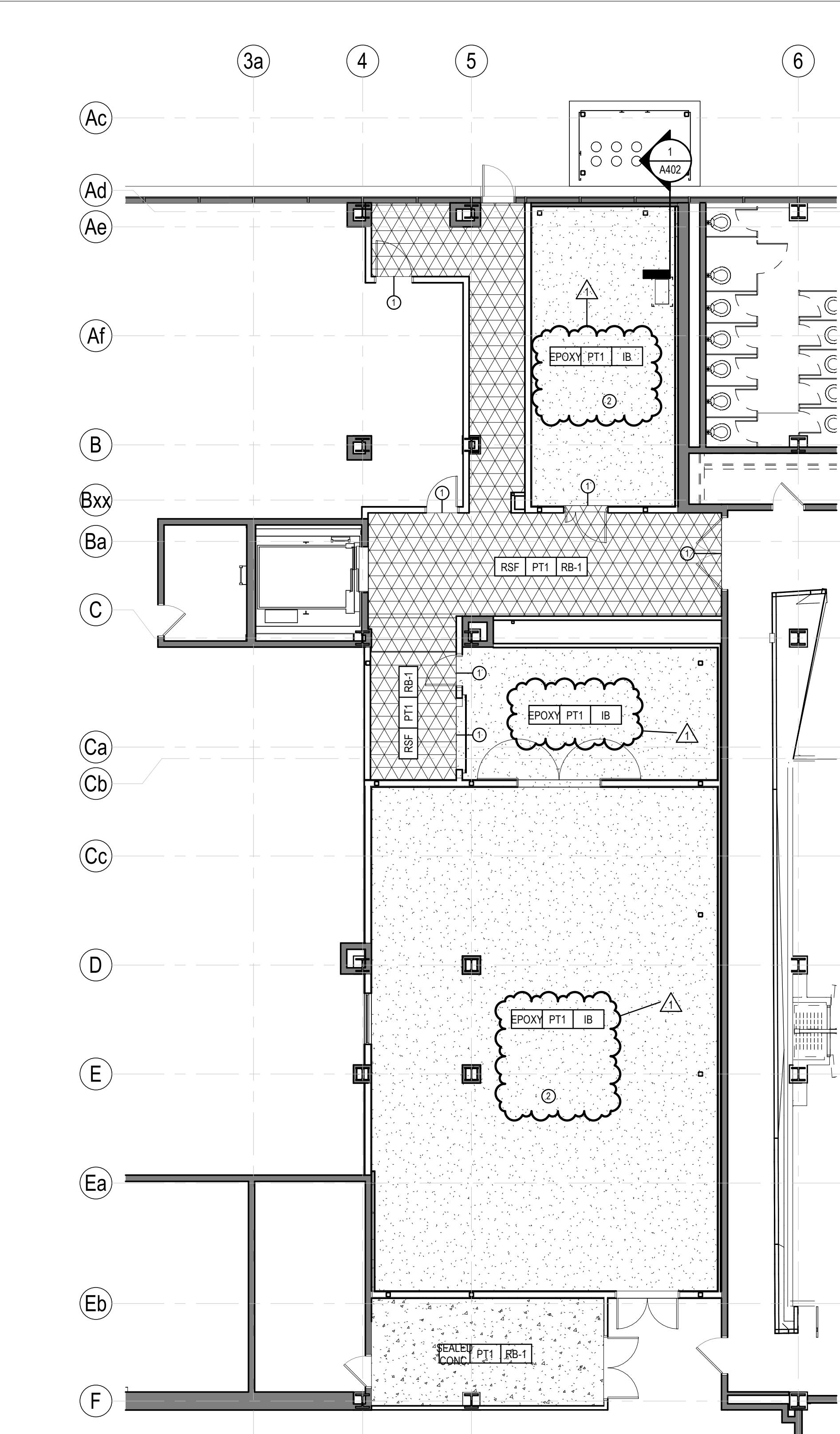
Department of Facilities Management
This University was raised by the people of Newfoundland as a memorial to the fallen in the great war, 1914-1918 1939-1945, that in freedom of learning, their cause and sacrifice might not be forgotten.

- Dedication plaque, Arts & Administration Building, St. John's Campus

PROJECT NAME:
**PRIMARY DATA CENTRE
REPLACEMENT**

CORE SCIENCE FACILITY
ST. JOHN'S, NL

MUN Project #: CSF-004-23


DRAWING TITLE:

**GENERAL PROJECT NOTES
AND DETAILS**

ROOM FINISH SCHEDULE					
Number	Name	Wall Finish	Base Finish	Floor Finish	Ceiling Finish
13C5A	LANDING	PT1	RB-1	RSF	ACT-1
CSF-13C5	FM CORRIDOR	PT1	RB-1	RSF	ACT-1
CSF-1319	UPS ROOM	PT1	IB	EPOXY	GYP
CSF-1320	STAGING AREA	PT1	IB	EPOXY	ACT-1
CSF-1320A	DATA CENTRE	PT1	IB	EPOXY	ACT-2
CSF-1321	SUPPR. SYSTEM/BOTTLE STORAGE	PT1	RB-1	SEALED CONC.	ACT-1

1 FINISHES PLAN - LEVEL 1
A204 1:100

SHEET NOTES

THESE NOTES APPLY ONLY TO THE WORK ILLUSTRATED ON THIS SHEET

1. INSTALL APPROPRIATE TRANSITION STRIPS WHERE CHANGE IN FLOORING OCCURS.

KEYNOTES

THESE NOTES APPLY ONLY TO PARTICULAR WORK IDENTIFIED BY KEYNOTE MARKERS.

1. FLOORING TRANSITION STRIP
2. INSTALL INTEGRAL COVED BASE ON UPSTAND OF ALL HOUSE KEEPING PADS INCLUDING METAL TRIM AT TOP.

FINISHES PLAN LEGEND

SEALED CONC.
CLEAR SEAL OVER EXISTING CONCRETE FLOOR

EPOXY
ROLLED ON EPOXY FLOOR FINISH.
COLOUR CHOSEN BY OWNERS
REPRESENTATIVE

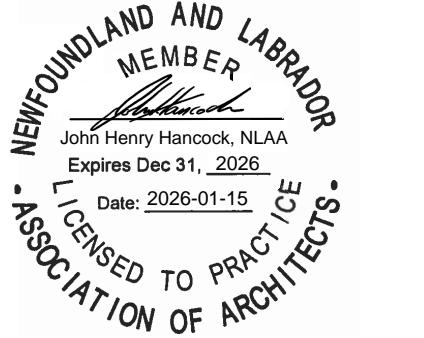
RSF
2MM THICK HOMOGENOUS SHEET
FLOORING TO MATCH EXISTING
ADJACENT CORRIDOR SPACES, C/W
MATCHING TRIM ON ALL EXPOSED TO
VIEW EDGES.

RB1
RUBBER WALL BASE
152MM WITH TOE TO MATCH
EXISTING ADJACENT SPACES

PT1
INTERIOR PAINT
WHITE COLOUR TO MATCH BENJAMIN
MOORE COLOUR OC-30 OXFORD WHITE
OR APPROVED ALTERNATE

IB
INTEGRAL WALL BASE
152MM COVED EPOXY WALL BASE
WITH METAL TRIM AT TOP

A - DETAIL
B - LOCATION/DRAWING No.
C - DRAWING No.


No. REVISION DATE

1 ISSUED FOR ADDENDUM NO. 4 2024.01.15
0 ISSUED FOR TENDER 2025.09.11

GENERAL NOTES

1. DRAWINGS TO BE READ AS A SET.
2. DO NOT SCALE FROM DRAWINGS
3. THE CONTRACTOR IS TO VERIFY ALL DIMENSIONS AND SITE CONDITIONS PRIOR TO SUBMISSION OF TENDERS.
4. ALL DEFICIENCIES FOUND IN THIS DRAWING IS TO BE BROUGHT TO THE ATTENTION OF THE FACILITIES ENGINEERING AND DEVELOPMENT OFFICE OF THE DEPARTMENT OF FACILITIES MANAGEMENT, MEMORIAL UNIVERSITY OF NEWFOUNDLAND PRIOR TO THE SUBMISSION OF THE TENDERS.

Permit/Seal

STANTEC

STANTEC ARCHITECTURE
141 KELSEY DRIVE
ST. JOHNS, NL A1B 0L2
Tel: (709) 576.1458 | www.stantec.com

Copyright Reserved

The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay.

Department of Facilities Management

This University was raised by the people of Newfoundland as a memorial to the fallen in the great wars, 1914-1918 1939-1945, that in freedom of learning, their cause and sacrifice might not be forgotten.

- Dedication plaque, Arts & Administration Building, St. John's Campus

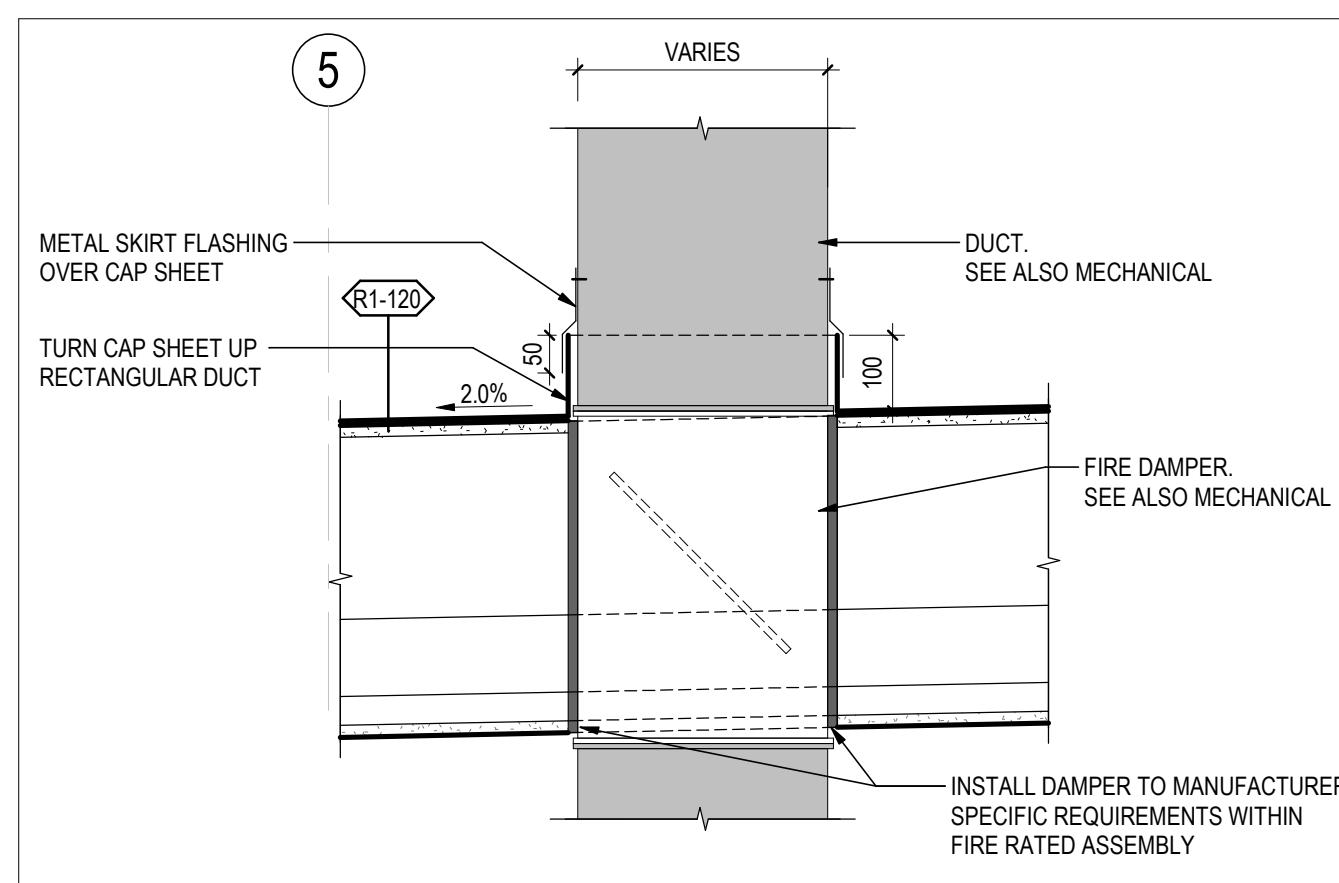
PROJECT NAME:
**PRIMARY DATA CENTRE
REPLACEMENT**

CORE SCIENCE FACILITY
ST. JOHN'S, NL

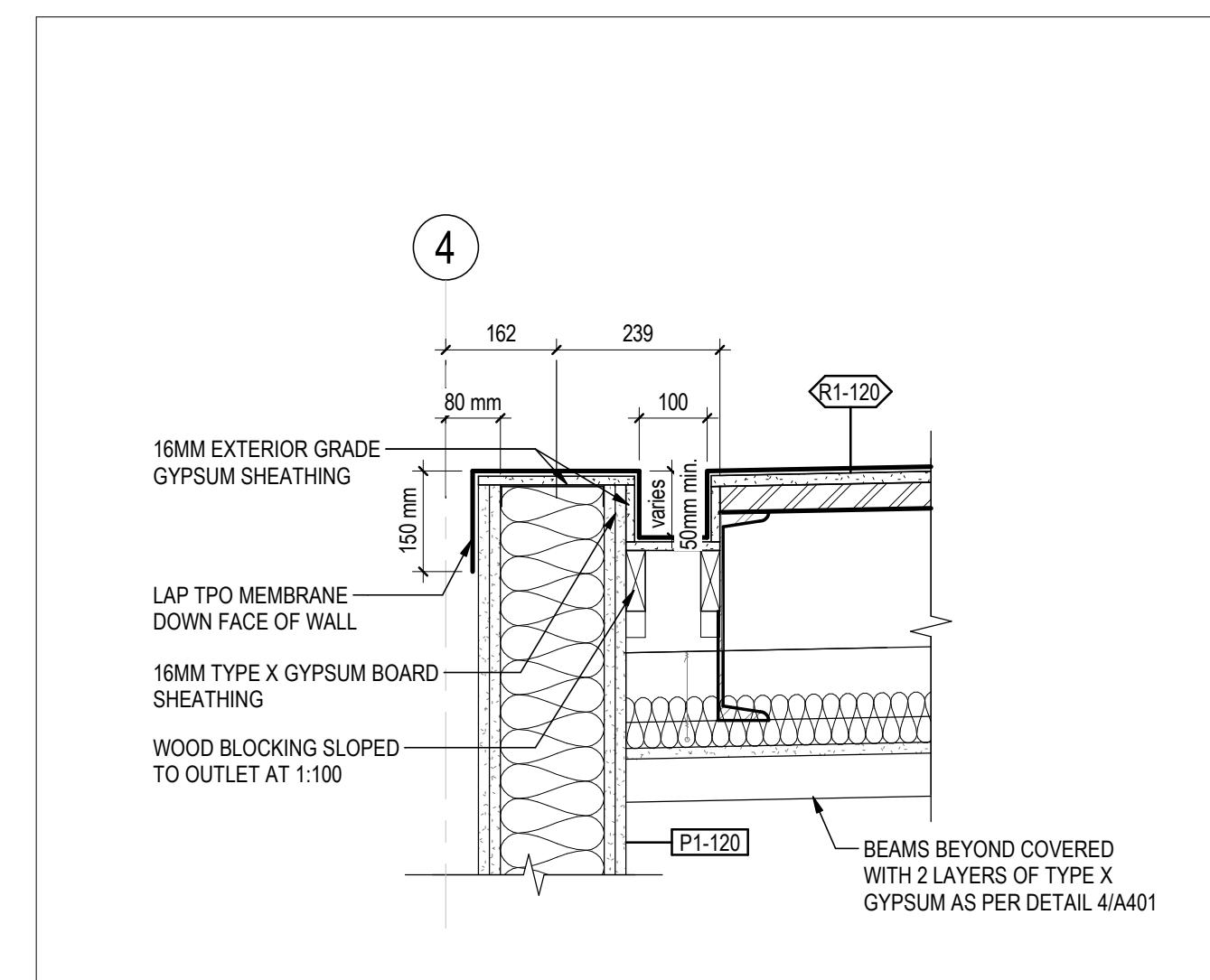
MUN Project #: CSF-004-23

DRAWING TITLE:

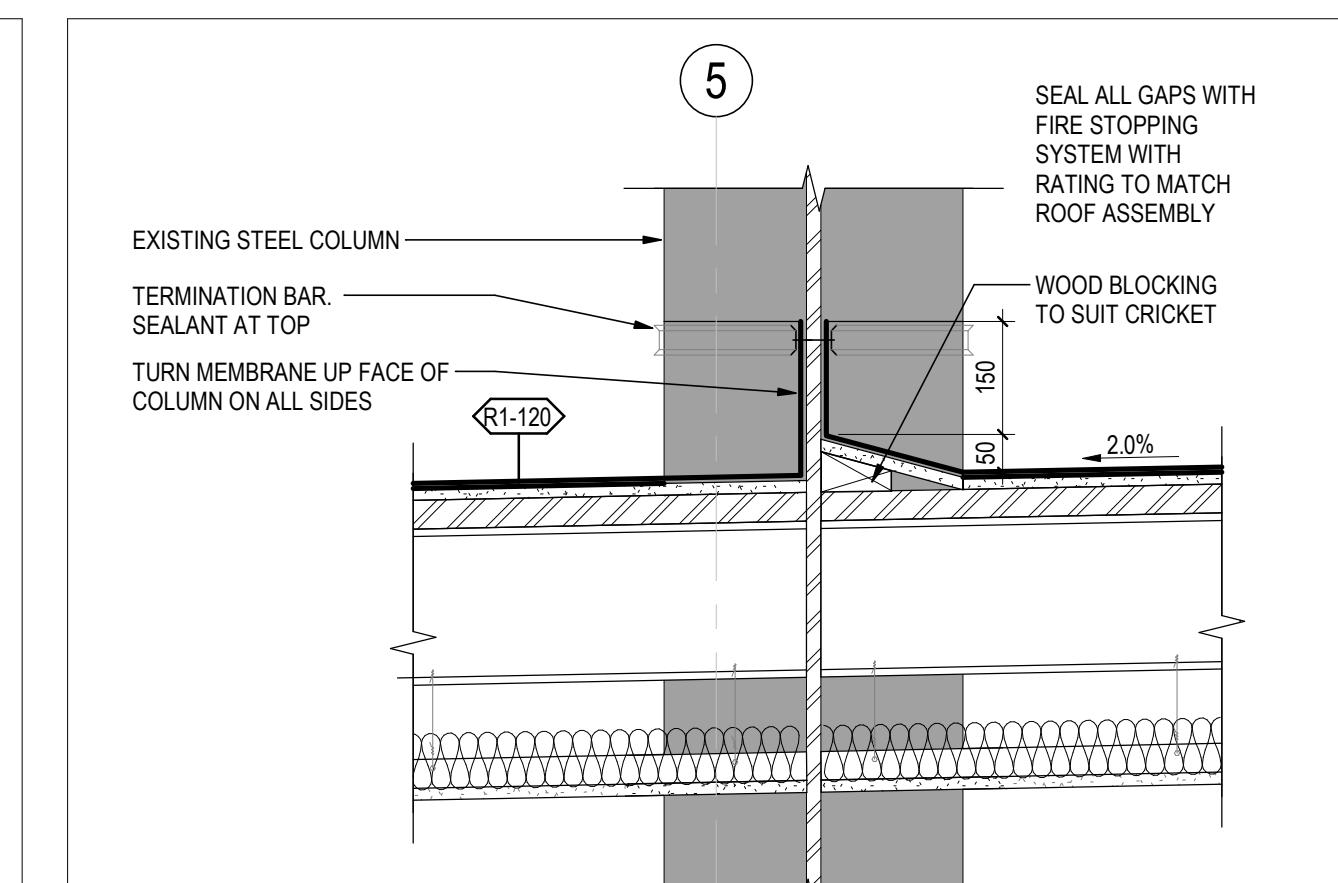
FINISHES PLAN

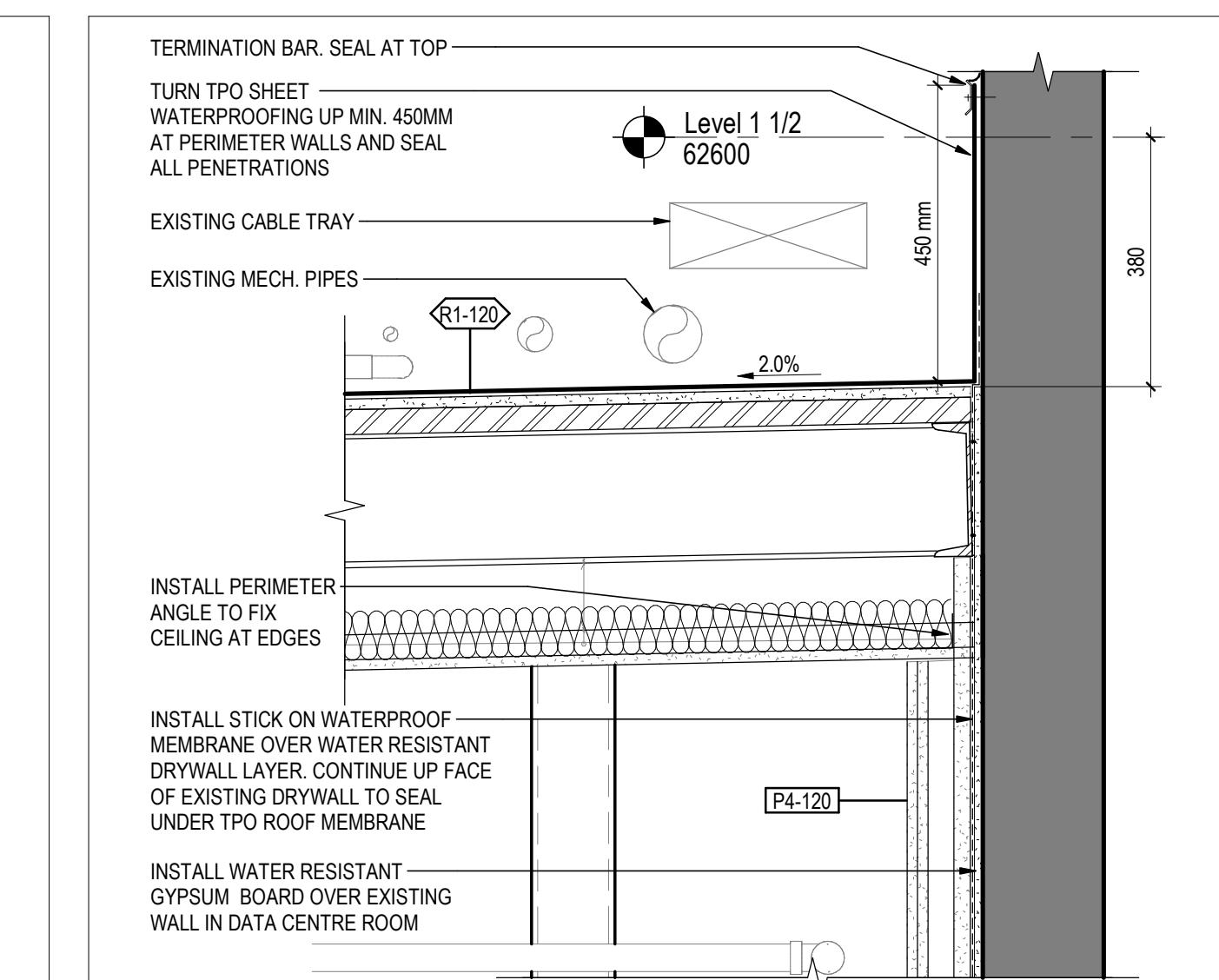

DESIGNED: JHH DRAWN: NH

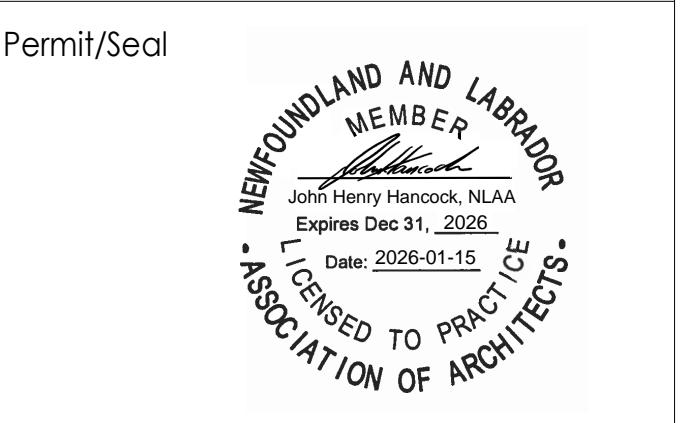
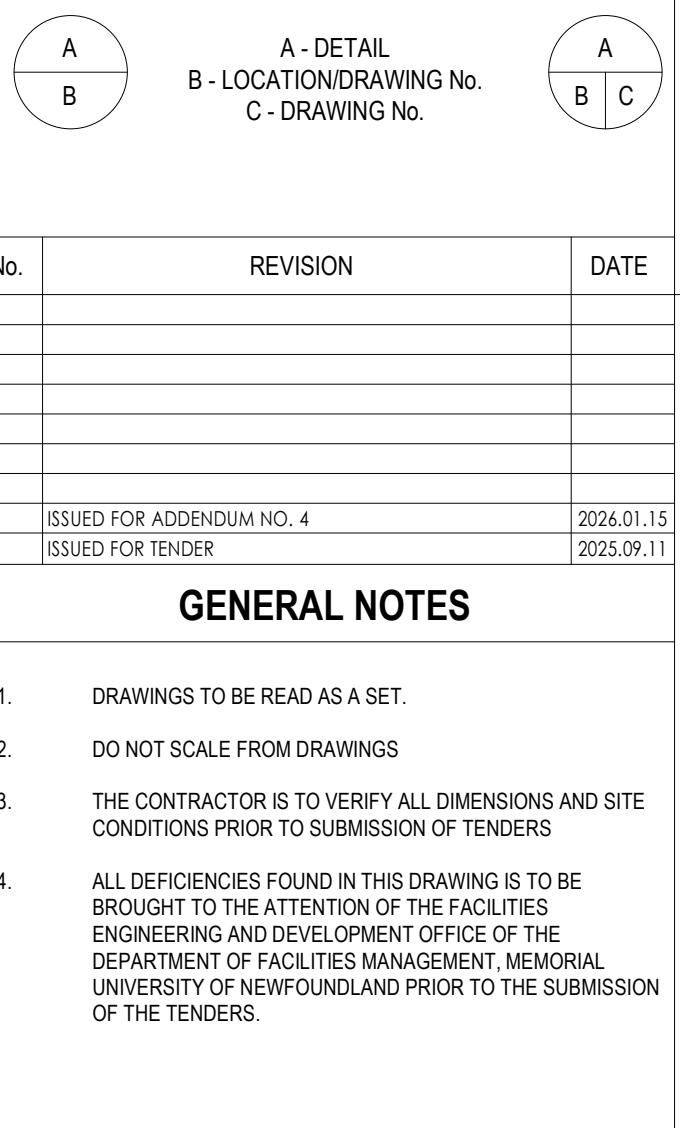
REVIEWED: APPROVED: JHH


SCALE: As indicated DATE: OCTOBER, 2024

STANTEC PROJECT No. DRAWING No.


133412008 A204


SECTION DETAIL - ROOF PENETRATION
A401 1:10



INTERIOR ROOF - GUTTER DETAIL
A401 1:10

SECTION - COLUMN ROOF PENETRATION
A401 1:10

INTERIOR ROOF - JUNCTION WITH EXISTING
A401 1:10

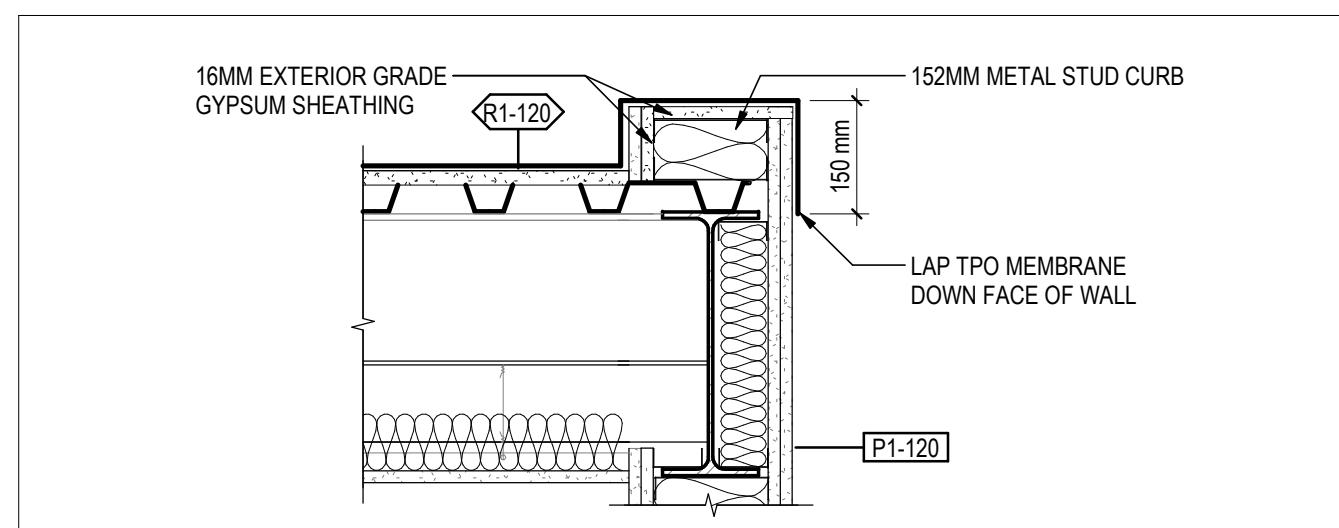
STANTEC ARCHITECTURE
141 KELSEY DRIVE
ST. JOHN'S, NL A1B 0L2
Tel: (709) 576.1458 • www.stantec.com

Copyright Reserved
The Copyright to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.
The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay.

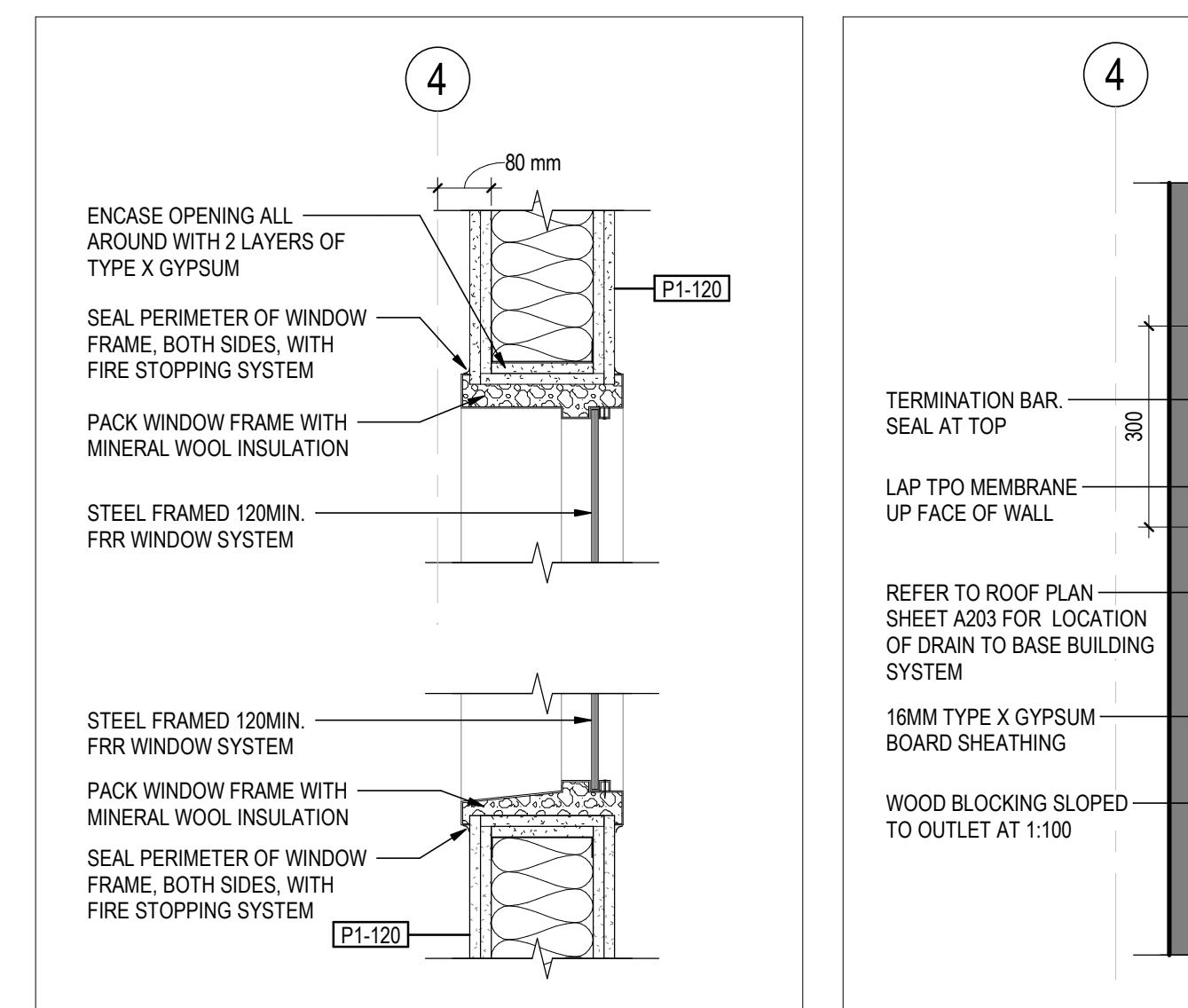
Department of Facilities Management
This University was raised by the people of Newfoundland as a memorial to the fallen in the great war, 1914-1918 1939-1945, that in freedom of learning, their cause and sacrifice might not be forgotten.

- Dedication plaque, Arts & Administration Building, St. John's Campus

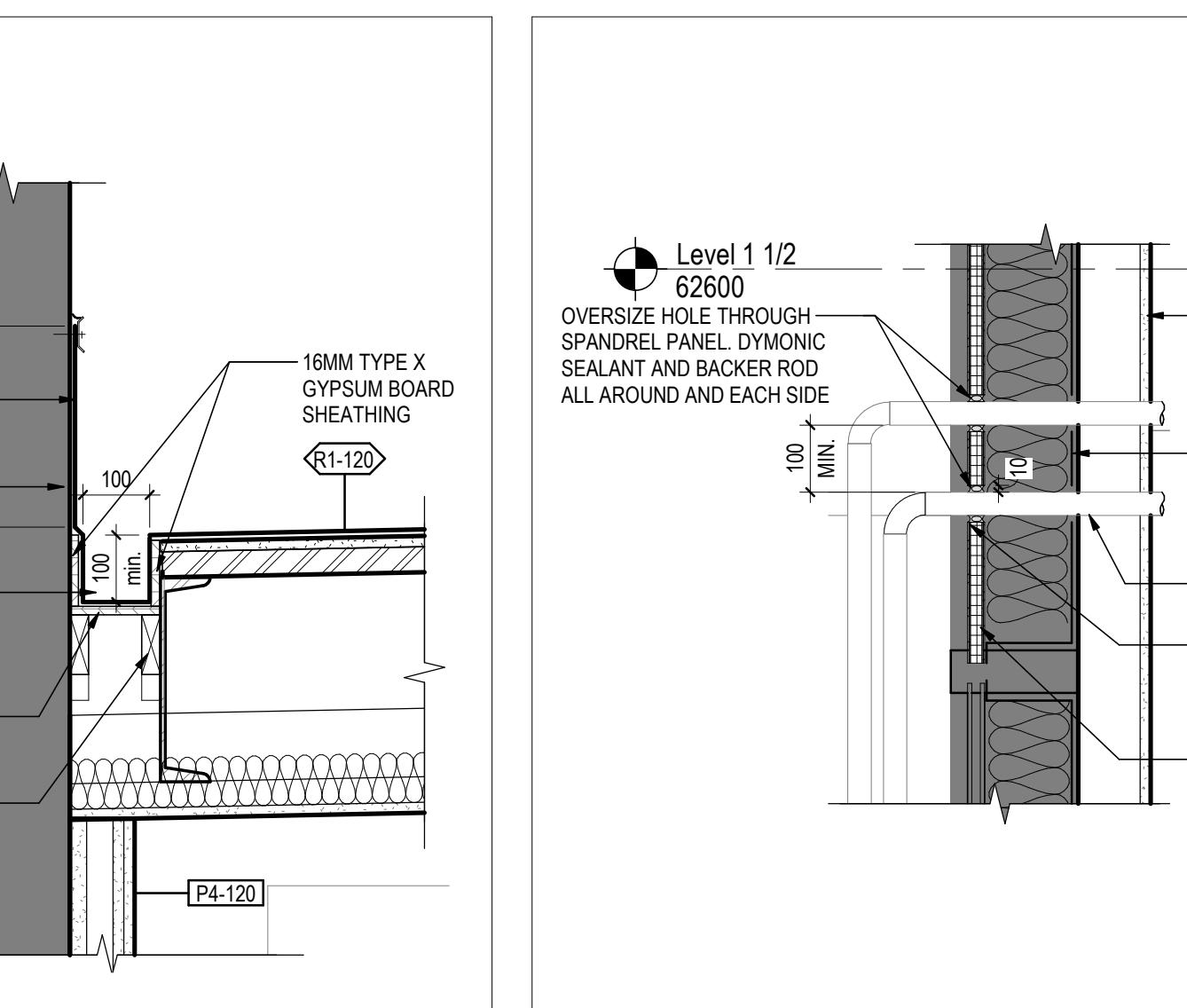
PROJECT NAME:
PRIMARY DATA CENTRE REPLACEMENT

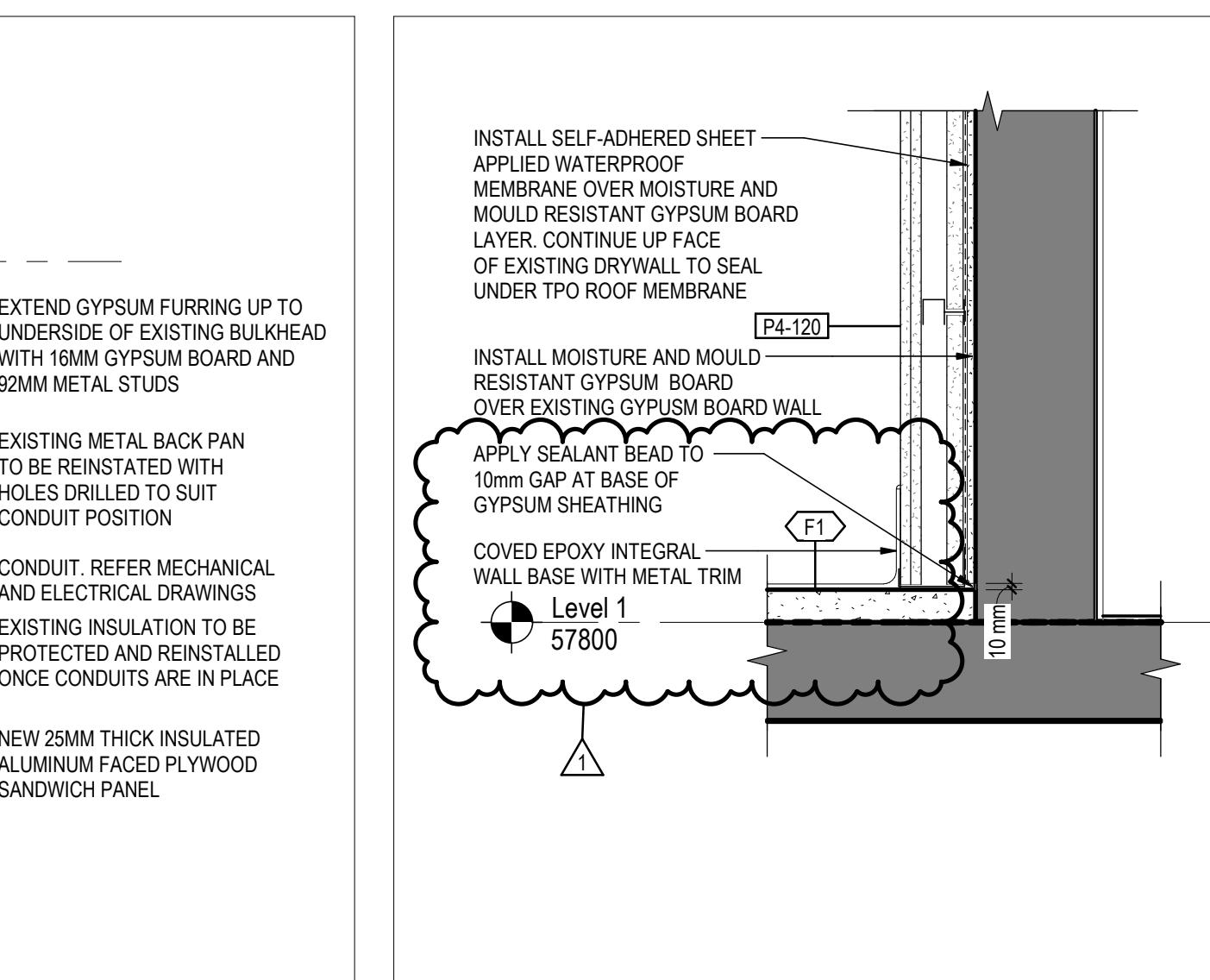

CORE SCIENCE FACILITY
ST. JOHN'S, NL

MUN Project #: CSF-004-23

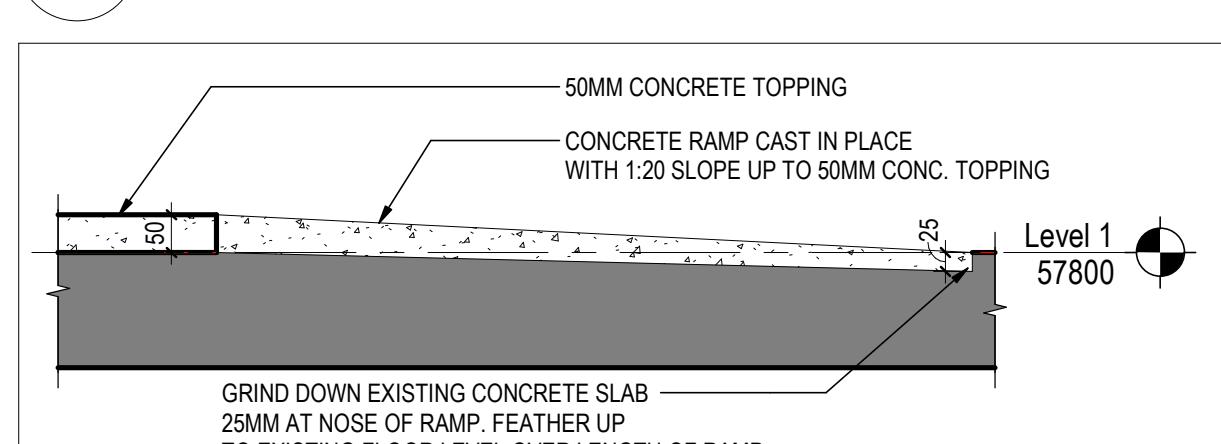

DRAWING TITLE:
INTERIOR DETAILS

DESIGNED: JHH DRAWN: NH
REVIEWED: APPROVED: JHH
SCALE: 1:10 DATE: OCTOBER, 2024
STANTEC PROJECT No. 133412008 DRAWING No. A401

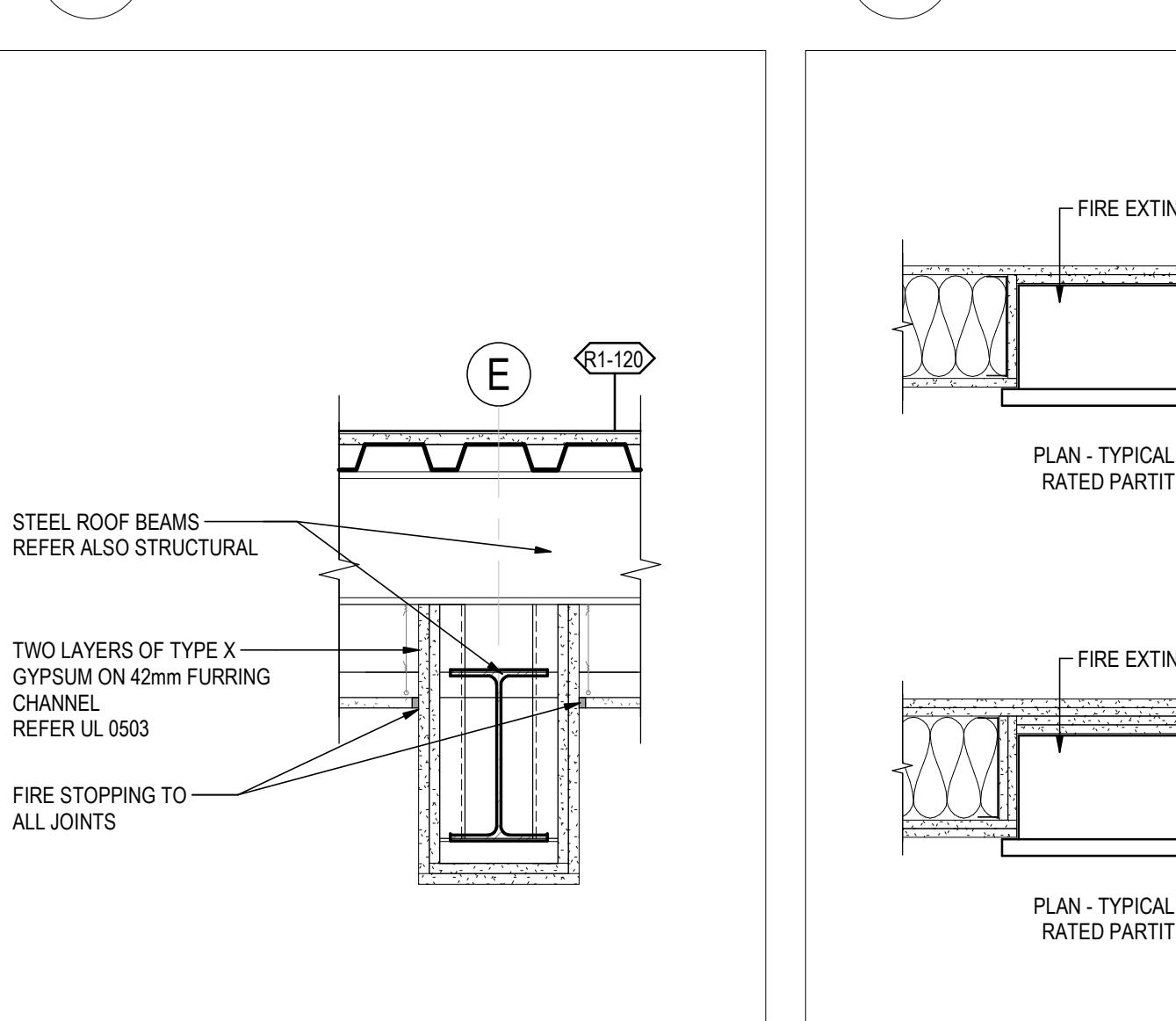

INTERIOR ROOF - PIPE PENETRATION
A401 1:10


SECTION DETAIL - ROOF EDGE
A401 1:10

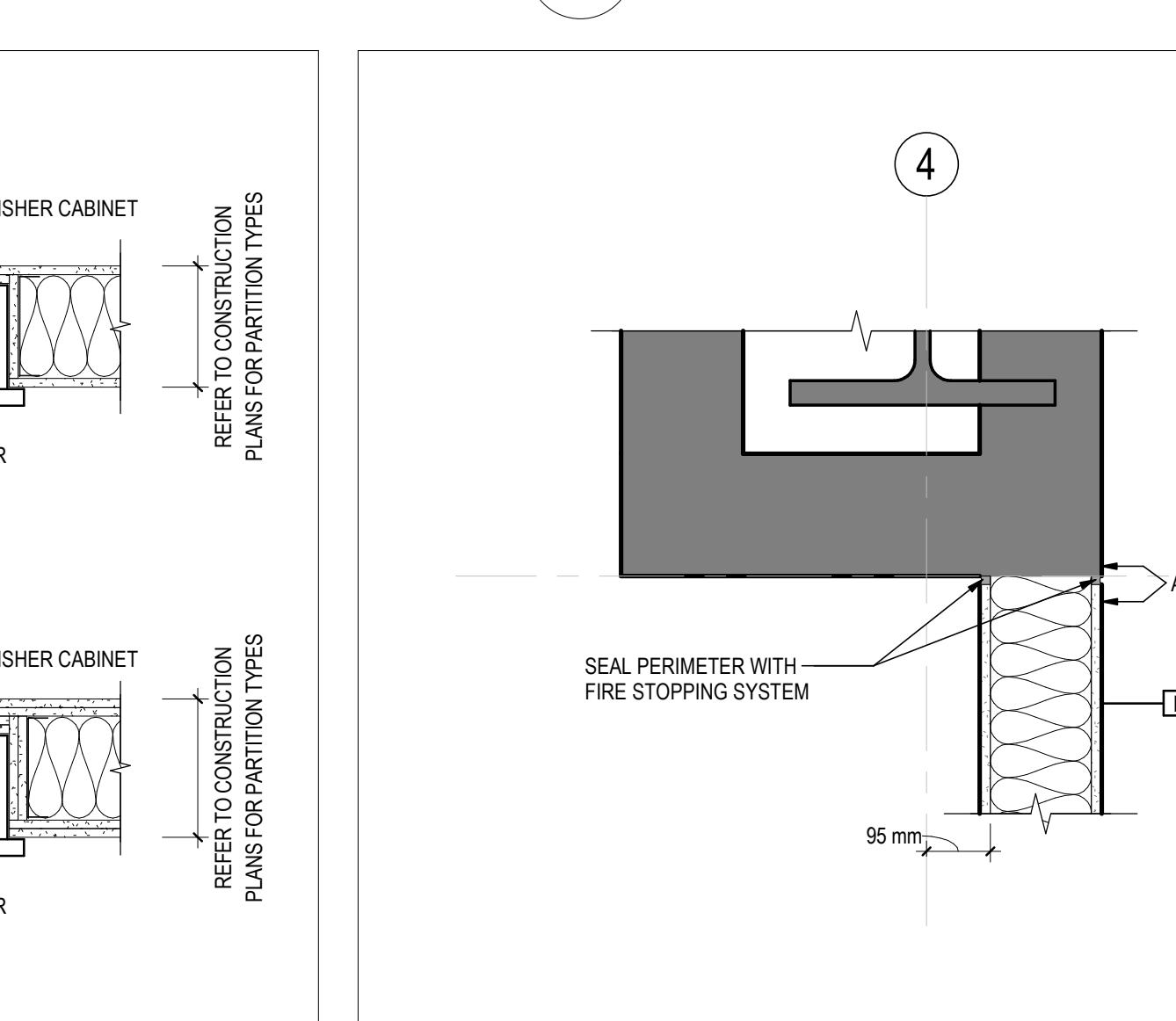
RATED WINDOW SECTION
A401 1:10

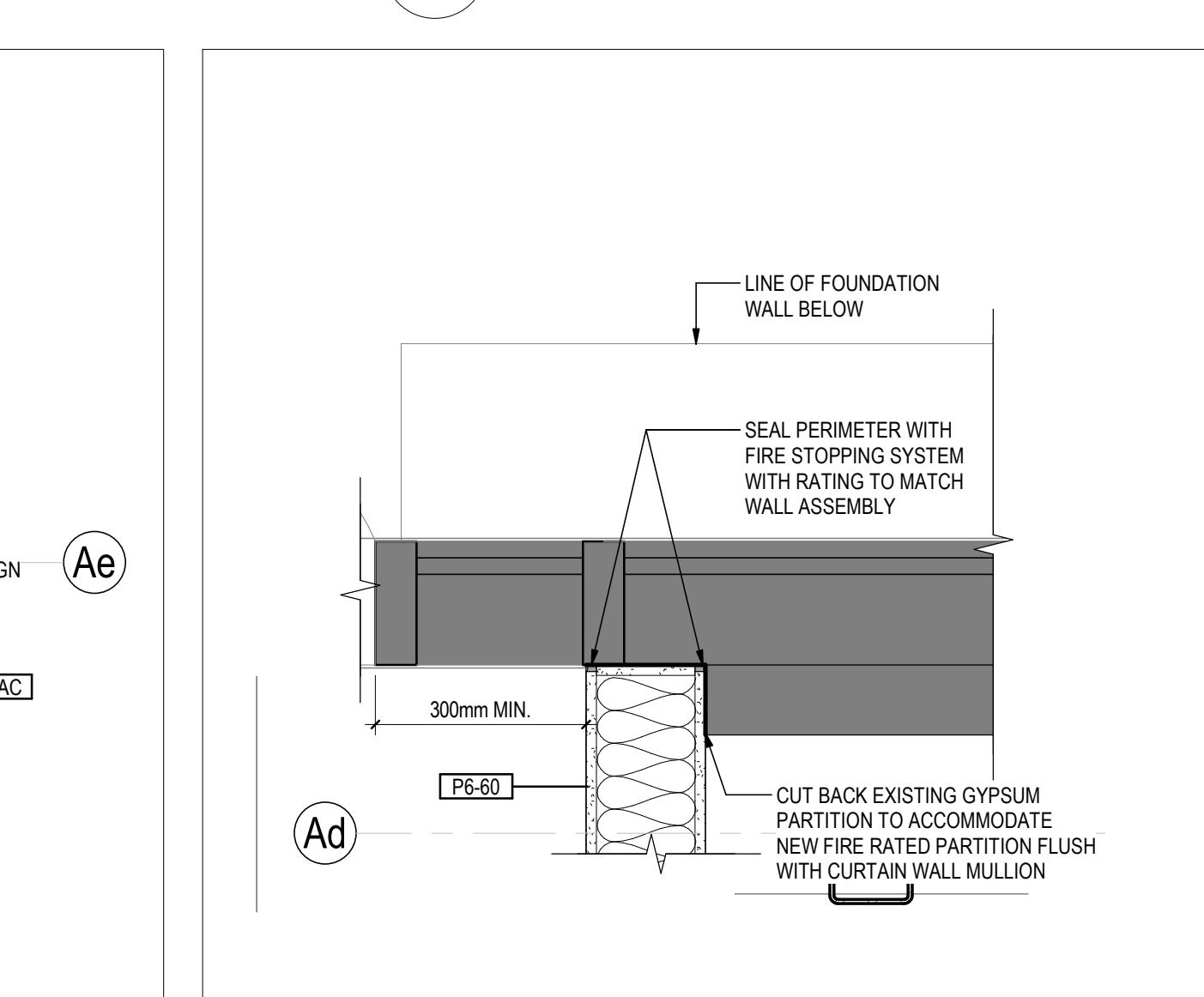


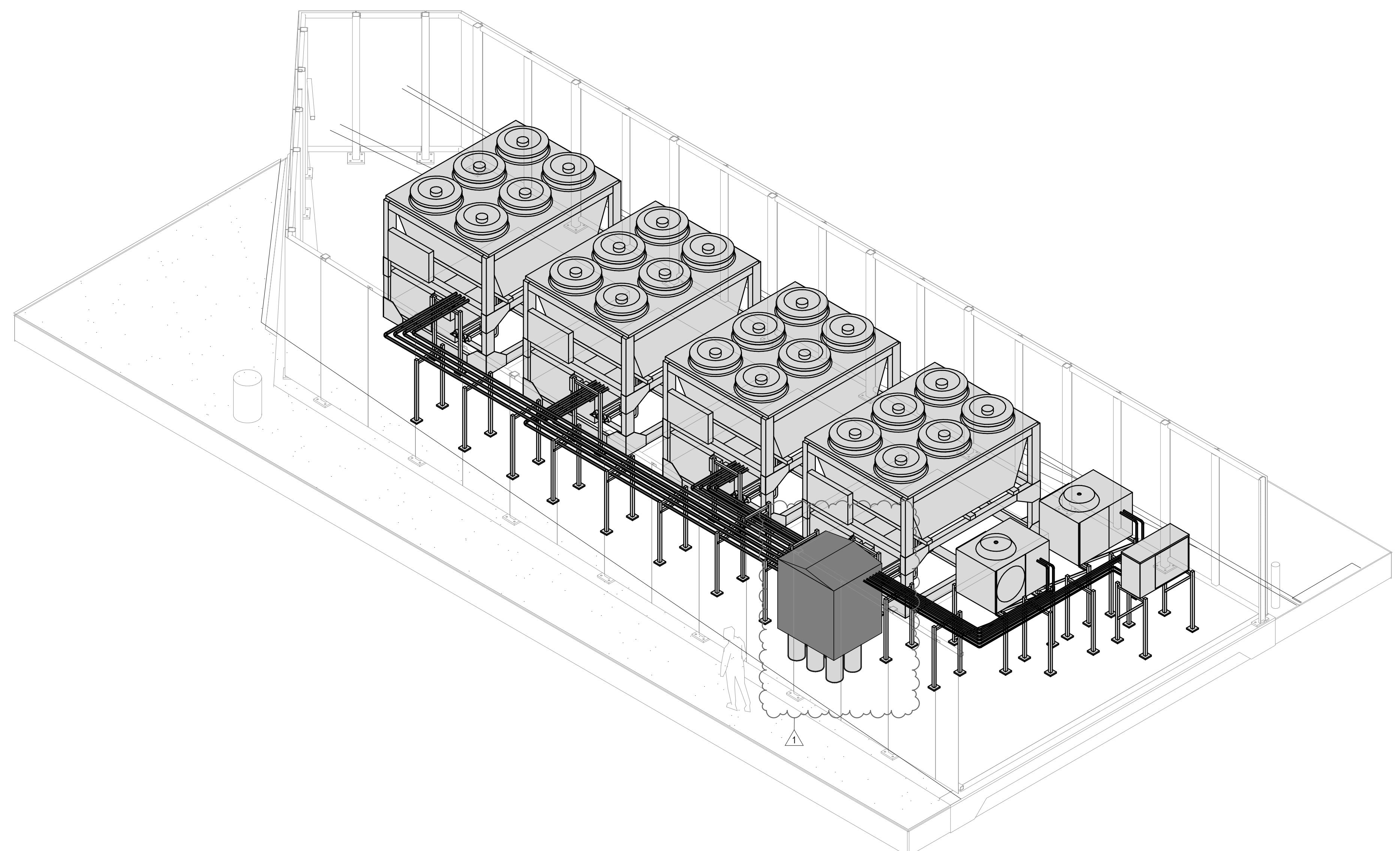
ROOF JUNCTION TO EXISTING
A401 1:10

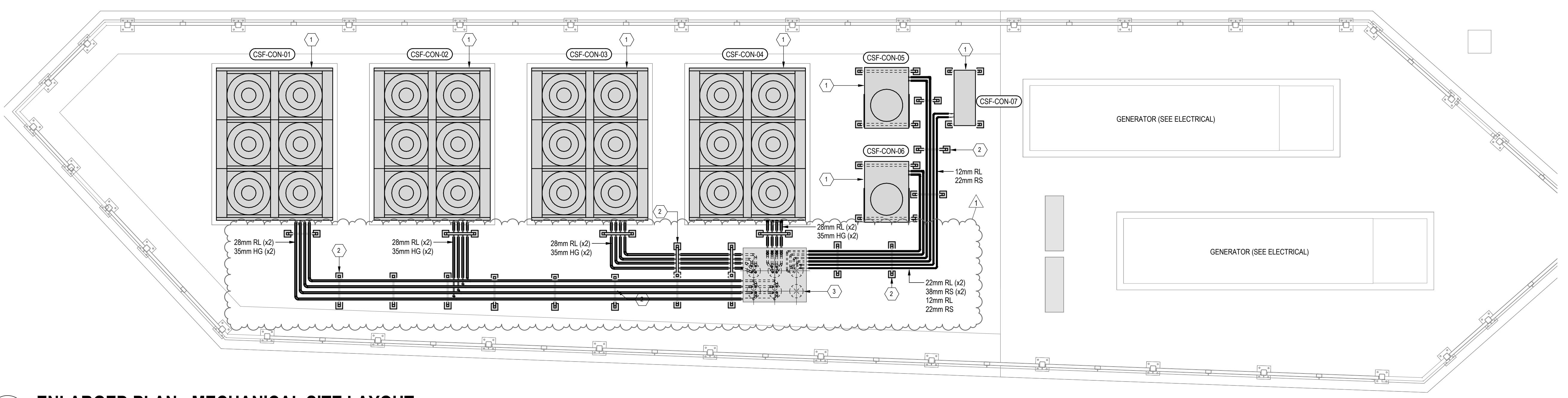


EXTERIOR CONDUIT PENETRATION
A401 1:10


SECTION - RATED WALL TO FLOOR
A401 1:10


CAST IN PLACE CONCRETE RAMP
A401 1:10


RATED BEAM ENCASEMENT
A401 1:10


SEMI-RECESSED FEC
A401 1:10

PLAN - WALL JUNCTION TO EXTERIOR
A401 1:10

1
M304
3D PERSPECTIVE VIEW - EXTERIOR CONDENSING UNITS

2
M304
ENLARGED PLAN - MECHANICAL SITE LAYOUT
1:50

GENERAL NOTES		
1.	CONDENSING UNITS TO BE INSTALLED AS PER MANUFACTURERS RECOMMENDATIONS. ENSURE ALL MAINTENANCE CLEARANCES ARE MAINTAINED.	
2.	ALL REFRIGERANT PIPE SIZES TO BE VERIFIED WITH MANUFACTURER.	

DRAWING NOTES		
1	EXTERIOR CONDENSING UNIT, CONDENSING UNIT TO BE SECURED AND MOUNTED ON STAND C/W VIBRATION ISOLATORS. SECURE STAND TO CONCRETE PAD.	2026.01.15
2	EXTERIOR REFRIGERANT PIPING TO BE MOUNTED AND SECURED TO SUPPORT STAND 1200mm A.F.G. AT 1200mm O.C. MINIMUM. ALL EXTERIOR PIPING TO BE INSULATED C/W ALUMINUM JACKETING. ALLOW ADEQUATE SPACE FOR ELECTRICAL CONDUIT AND CONTROL CABLEING. COORDINATE WITH ELECTRICAL CONTRACTOR. SEE DETAIL ON DRAWING M401.	2025.09.11
3	ROUTE REFRIGERANT PIPING AND CONTROL WIRING SERVING CONDENSING UNITS DOWN INTO PVC RACEWAYS. SEAL ALL PIPING PENETRATION INTO ENCLOSURE WEATHER-TIGHT. COORDINATE PLACEMENT OF ENCLOSURE WITH ELECTRICAL TO ENSURE MAINTENANCE REQUIREMENTS FOR CONDENSING UNITS ARE MAINTAINED. REFER TO SITE PLAN.	

A - DETAIL	
B - LOCATION/DRAWING No.	
C - DRAWING No.	
No.	REVISION
	DATE
1	ISSUED FOR ADDENDUM NO.4
0	ISSUED FOR TENDER
GENERAL NOTES	
1.	DRAWINGS TO BE READ AS A SET.
2.	DO NOT SCALE FROM DRAWINGS
3.	THE CONTRACTOR IS TO VERIFY ALL DIMENSIONS AND SITE CONDITIONS PRIOR TO SUBMISSION OF TENDERS
4.	ALL DEFICIENCIES FOUND IN THIS DRAWING IS TO BE BROUGHT TO THE ATTENTION OF THE FACILITIES ENGINEERING AND DEVELOPMENT OFFICE OF THE DEPARTMENT OF FACILITIES MANAGEMENT, MEMORIAL UNIVERSITY OF NEWFOUNDLAND PRIOR TO THE SUBMISSION OF THE TENDERS
Permit/Seal	
PROVINCE OF NEWFOUNDLAND AND LABRADOR	
pegnl	ENGINEERING PERMIT J0291
STANTEC CONSULTING LTD.	04862
Signature or Member Number (Member-in-Responsible Charge)	

Stantec Consulting Ltd.
200-325 25 Street SE
Calgary, AB T2A 7H8
Tel: (403) 716-8000 • www.stantec.com

Copyright Reserved
The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay.

MEMORIAL
UNIVERSITY

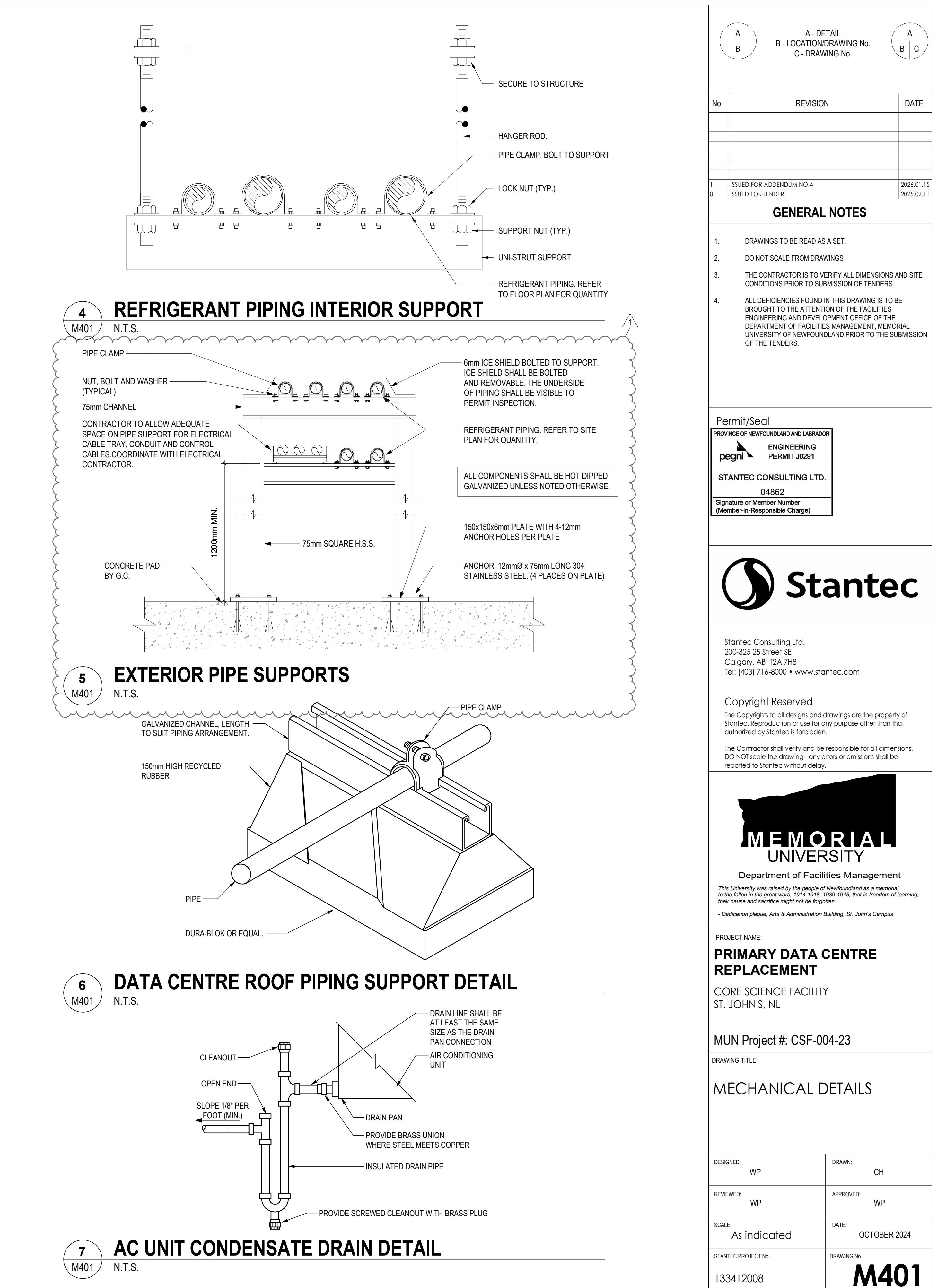
Department of Facilities Management

This University was raised by the people of Newfoundland as a memorial to the fallen in the great wars, 1914-1918, 1939-1945, that in freedom of learning, their cause and sacrifice might not be forgotten.

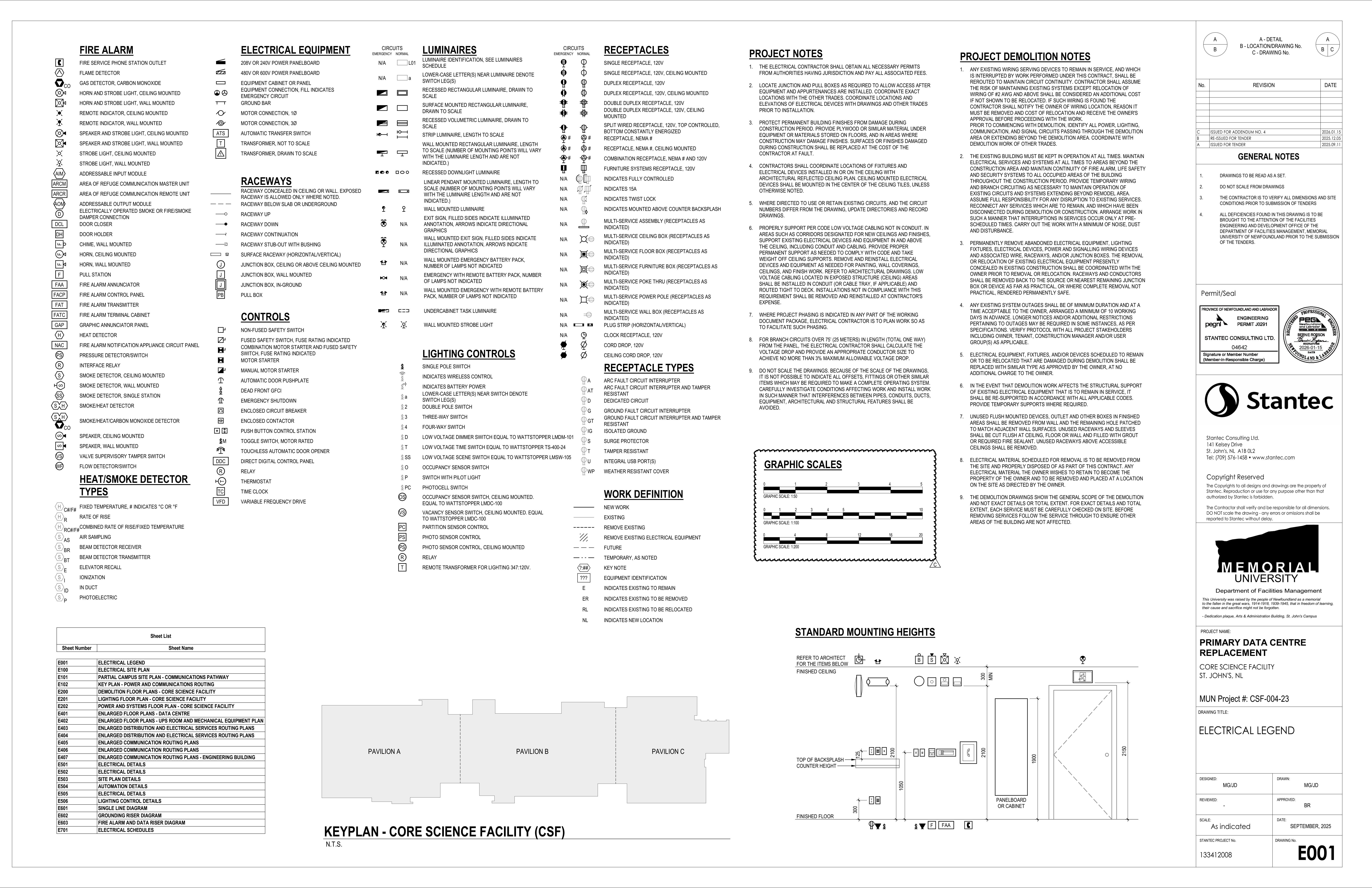
- Dedication plaque, Arts & Administration Building, St. John's Campus

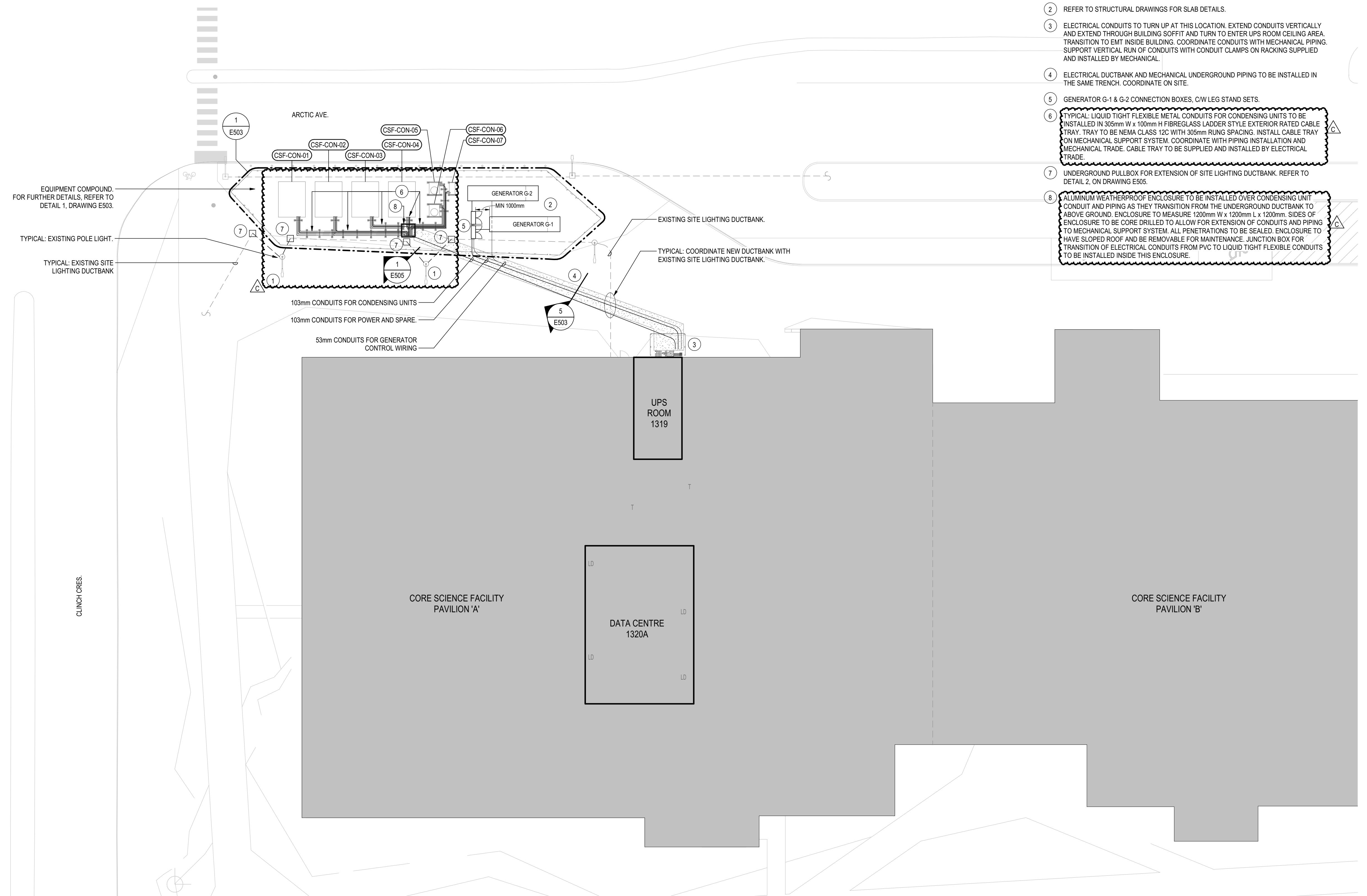
PROJECT NAME:

**PRIMARY DATA CENTRE
REPLACEMENT**



CORE SCIENCE FACILITY
ST. JOHN'S, NL


MUN Project #: CSF-004-23


DRAWING TITLE:

**ENLARGED FLOOR PLAN - SITE
PLAN**

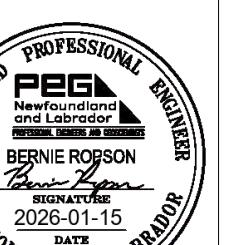
DESIGNED:	WP	DRAWN:	CH
REVIEWED:	WP	APPROVED:	WP
SCALE:	As indicated	DATE:	OCTOBER 2024
STANTEC PROJECT No.	133412008	DRAWING No.	M304

1
E100 1:200
ELECTRICAL SITE PLAN - CORE SCIENCE FACILITY

NOTES:

- 1 EXISTING LIGHT POLE TO BE RELOCATED FROM ITS ORIGINAL LOCATION. CUT BACK EXISTING SITE LIGHTING DUCTBANK TO ALLOW FOR CONNECTION AND EXTENSION OF CONDUIT AND WIRING TO NEW LIGHT POLE LOCATION. INSTALL UNDERGROUND PULLBOXES AT CONDUIT CONNECTION POINTS. EXTENSION OF CONDUIT TO BE CONCRETE ENCASED TO MATCH EXISTING DUCTBANK. COORDINATE WITH STRUCTURAL FOR THE INSTALLATION OF NEW POLE BASES.
- 2 REFER TO STRUCTURAL DRAWINGS FOR SLAB DETAILS.
- 3 ELECTRICAL CONDUITS TO TURN UP AT THIS LOCATION. EXTEND CONDUITS VERTICALLY AND EXTEND THROUGH BUILDING SOFFIT AND TURN TO ENTER UPS ROOM CEILING AREA. TRANSITION TO EMT INSIDE BUILDING. COORDINATE CONDUITS WITH MECHANICAL PIPING. SUPPORT VERTICAL RUN OF CONDUITS WITH CONDUIT CLAMPS ON RACKING SUPPLIED AND INSTALLED BY MECHANICAL.
- 4 ELECTRICAL DUCTBANK AND MECHANICAL UNDERGROUND PIPING TO BE INSTALLED IN THE SAME TRENCH. COORDINATE ON SITE.
- 5 GENERATOR G-1 & G-2 CONNECTION BOXES, C/W LEG STAND SETS.
- 6 TYPICAL: LIQUID TIGHT FLEXIBLE METAL CONDUITS FOR CONDENSING UNITS TO BE INSTALLED IN 305mm W x 100mm H FIBREGLASS LADDER STYLE EXTERIOR RATED CABLE TRAY. TRAY TO BE NEMA CLASS 12C WITH 305mm RUNG SPACING. INSTALL CABLE TRAY ON MECHANICAL SUPPORT SYSTEM. COORDINATE WITH PIPING INSTALLATION AND MECHANICAL TRADE. CABLE TRAY TO BE SUPPLIED AND INSTALLED BY ELECTRICAL TRADE.
- 7 UNDERGROUND PULLBOX FOR EXTENSION OF SITE LIGHTING DUCTBANK. REFER TO DETAIL 2, ON DRAWING E505.
- 8 ALUMINUM WEATHERPROOF ENCLOSURE TO BE INSTALLED OVER CONDENSING UNIT CONDUIT AND PIPING AS THEY TRANSITION FROM THE UNDERGROUND DUCTBANK TO ABOVE GROUND. ENCLOSURE TO MEASURE 1200mm W x 1200mm L x 1200mm. SIDES OF ENCLOSURE TO BE CORR DRILLED TO ALLOW FOR EXTENSION OF CONDUITS AND PIPING. MECHANICAL SUPPORT SYSTEM. ALL PENETRATIONS TO BE SEALED. ENCLOSURE TO HAVE SLOPES AT ONE END AND BE REMOVABLE FOR MAINTENANCE. JUNCTION BOX FOR TRANSITION OF ELECTRICAL CONDUITS FROM PVC TO LIQUID TIGHT FLEXIBLE CONDUITS TO BE INSTALLED INSIDE THIS ENCLOSURE.

A - DETAIL
B - LOCATION/DRAWING No.
C - DRAWING No.


No.	REVISION	DATE
C	ISSUED FOR ADDENDUM NO. 4	2026.01.15
B	RE-ISSUED FOR TENDER	2025.12.05
A	ISSUED FOR TENDER	2025.09.11

GENERAL NOTES

1. DRAWINGS TO BE READ AS A SET.
2. DO NOT SCALE FROM DRAWINGS
3. THE CONTRACTOR IS TO VERIFY ALL DIMENSIONS AND SITE CONDITIONS PRIOR TO SUBMISSION OF TENDERS
4. ALL DEFICIENCIES FOUND IN THIS DRAWING IS TO BE BROUGHT TO THE ATTENTION OF THE FACILITIES ENGINEERING AND DEVELOPMENT OFFICE OF THE DEPARTMENT OF FACILITIES MANAGEMENT, MEMORIAL UNIVERSITY OF NEWFOUNDLAND PRIOR TO THE SUBMISSION OF THE TENDERS.

Permit/Seal

PROVINCE OF NEWFOUNDLAND AND LABRADOR
ENGINEERING PERMIT J0291
pegnl
STANTEC CONSULTING LTD.
04642
Signature or Member Number
(Member-in-Responsible Charge)



Stantec Consulting Ltd.
141 Kelsey Drive
St. John's, NL A1B 0L2
Tel: (709) 576-1458 • www.stantec.com

Copyright Reserved

The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

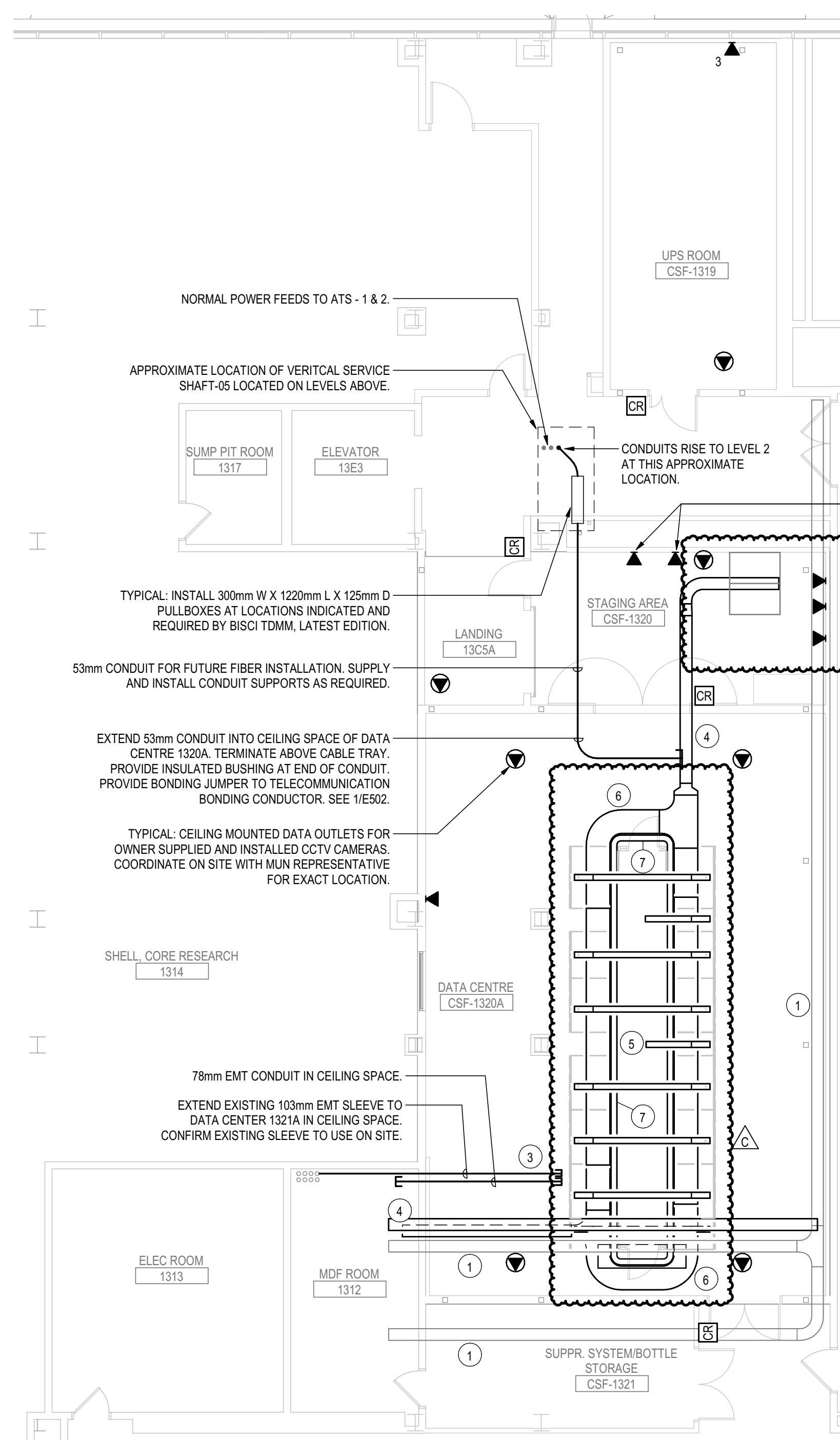
The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay.

Department of Facilities Management

This University was raised by the people of Newfoundland as a 'memorial to the fallen in the great wars, 1914-1918 1939-1945, that in freedom of learning, their cause and sacrifice might not be forgotten.'

- Dedication plaque, Arts & Administration Building, St. John's Campus

PROJECT NAME:
PRIMARY DATA CENTRE REPLACEMENT

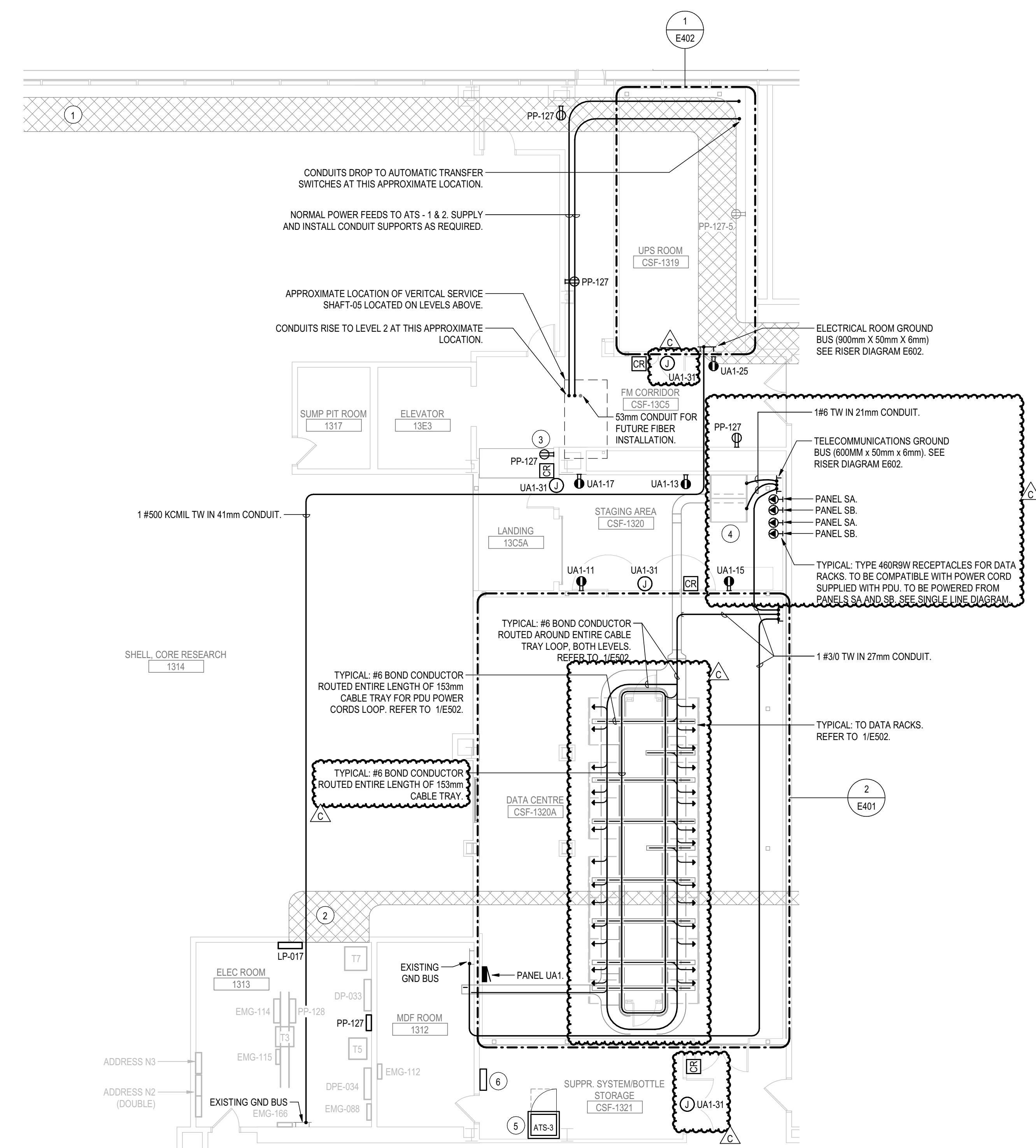

CORE SCIENCE FACILITY
ST. JOHN'S, NL

MUN Project #: CSF-004-23

DRAWING TITLE:

ELECTRICAL SITE PLAN

DESIGNED:	MG/JD	DRAWN:	MG/JD
REVIEWED:	-	APPROVED:	BR
SCALE:	1 : 200	DATE:	SEPTEMBER, 2025
STANTEC PROJECT No.	133412008	DRAWING No.	E100



KEYNOTES FOR SYSTEMS:

- ① TYPICAL: CABLE TRAY INDICATED AS SHADED IS EXISTING IN THE LEVEL 1.5 SPACE.
- ② REFER TO DATA RISER DIAGRAM ON DRAWING E603 FOR FURTHER INFORMATION.
- ③ TYPICAL: ALL CONDUIT ENDS TO BE C/W AN INSULATED BUSHING. CONDUITS THAT TERMINATE IN THE DATA CENTRE TO BE BONDED TO THE TELECOMMUNICATION BONDING CONDUCTOR PER DETAIL 1/E502.
- ④ SINGLE RUN OF 305 mm W X 100mm H BASKET TYPE CABLE TRAY TO EXTEND TO MDF AND STAGING ROOM. TO BE SUPPORTED BY STRUCTURAL CEILING GRID. TRAY TO BE FACTORY PAINTED WHITE. SEE DETAIL 2, DRAWING E502.
- ⑤ TYPICAL: SINGLE RUN OF 153mm W X 100mm H BASKET TYPE CABLE TRAY TO EXTEND OVER TOP OF DATA RACKS FOR MANAGEMENT OF PDU POWER CORDS. TO BE COMPLETE WITH WATERFALL TYPE FITTINGS TO ALLOW FOR VERTICAL TRANSITION DOWN TO DATA RACKS. SECURE TO TOP OF STRUCTURAL CEILING GRID. SEE DETAILS ON DRAWINGS E501 AND E502.
- ⑥ TWO TIERS OF 607mm W X 100mm H BASKET TYPE CABLE TRAYS COMPLETE WITH TWO (2) 100mm DIVIDERS PER TRAY. FOR THE MANAGEMENT OF CABLES WITHIN THE HOT AISLE CONTAINMENT ENCLOSURE. WHERE CABLES TRAYS EXTEND OUTSIDE OF ENCLOSURE, COORDINATE WITH ENCLOSURE PANELS TO ENSURE PROPER SEALING. CABLE TRAYS TO BE FACTORY PAINTED WHITE. TRAYS TO BE SUPPORTED FROM STRUCTURAL CEILING GRID SYSTEM. SEE DETAIL 2, DRAWING E502.
- ⑦ 153 mm W X 100mm H BASKET TYPE CABLE TRAY. TO BE SUPPORTED BY STRUCTURAL CEILING GRID. TRAY TO BE FACTORY PAINTED WHITE.

2
E202 SYSTEMS FLOOR PLAN LAYOUT - LEVEL 1

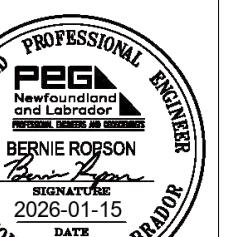
1 : 100

1
E202 POWER FLOOR PLAN LAYOUT - LEVEL 1

1 : 100

A - DETAIL
B - LOCATION/DRAWING No.
C - DRAWING No.

A
B
C


No.	REVISION	DATE
C	ISSUED FOR ADDENDUM NO. 4	2026.01.15
B	RE-ISSUED FOR TENDER	2025.12.05
A	ISSUED FOR TENDER	2025.09.11

GENERAL NOTES

1. DRAWINGS TO BE READ AS A SET.
2. DO NOT SCALE FROM DRAWINGS
3. THE CONTRACTOR IS TO VERIFY ALL DIMENSIONS AND SITE CONDITIONS PRIOR TO SUBMISSION OF TENDERS
4. ALL DEFICIENCIES FOUND IN THIS DRAWING IS TO BE BROUGHT TO THE ATTENTION OF THE FACILITIES ENGINEERING AND DEVELOPMENT OFFICE OF THE DEPARTMENT OF FACILITIES MANAGEMENT, MEMORIAL UNIVERSITY OF NEWFOUNDLAND PRIOR TO THE SUBMISSION OF THE TENDERS.

Permit/Seal

PROVINCE OF NEWFOUNDLAND AND LABRADOR
ENGINEERING PERMIT J0291
STANTEC CONSULTING LTD.
04642
Signature or Member Number (Member-in-Responsible Charge)


Stantec

Stantec Consulting Ltd.
141 Kelsey Drive
St. John's, NL A1B 0L2
Tel: (709) 576-1458 • www.stantec.com

Copyright Reserved

The Copyright to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay.

This University was raised by the people of Newfoundland as a memorial to the fallen in the great war, 1914-1918 1939-1945, that in freedom of learning, their cause and sacrifice might not be forgotten.

- Dedication plaque, Arts & Administration Building, St. John's Campus

PROJECT NAME:

PRIMARY DATA CENTRE REPLACEMENT

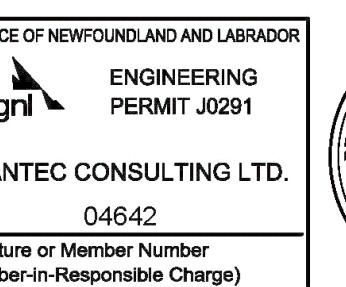
CORE SCIENCE FACILITY
ST. JOHN'S, NL

MUN Project #: CSF-004-23

DRAWING TITLE:

POWER AND SYSTEMS FLOOR PLAN - CORE SCIENCE FACILITY

DESIGNED:	MG/JD	DRAWN:	MG/JD
REVIEWED:	-	APPROVED:	BR
SCALE:	1 : 100	DATE:	SEPTEMBER, 2025
STANTEC PROJECT No.	133412008	DRAWING No.	E202


A - DETAIL
B - LOCATION/DRAWING No.
C - DRAWING No.

No.	REVISION	DATE
C	ISSUED FOR ADDENDUM NO. 4	2026.01.15
B	RE-ISSUED FOR TENDER	2025.12.05
A	ISSUED FOR TENDER	2025.09.11

GENERAL NOTES

1. DRAWINGS TO BE READ AS A SET.
2. DO NOT SCALE FROM DRAWINGS
3. THE CONTRACTOR IS TO VERIFY ALL DIMENSIONS AND SITE CONDITIONS PRIOR TO SUBMISSION OF TENDERS
4. ALL DEFICIENCIES FOUND IN THIS DRAWING IS TO BE BROUGHT TO THE ATTENTION OF THE FACILITIES ENGINEERING AND DEVELOPMENT OFFICE OF THE DEPARTMENT OF FACILITIES MANAGEMENT, MEMORIAL UNIVERSITY OF NEWFOUNDLAND PRIOR TO THE SUBMISSION OF THE TENDERS.

Permit/Seal

Stantec

Stantec Consulting Ltd.
141 Kelsey Drive
St. John's, NL A1B 0L2
Tel: (709) 576-1458 • www.stantec.com

Copyright Reserved

The Copyright to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay.

Department of Facilities Management

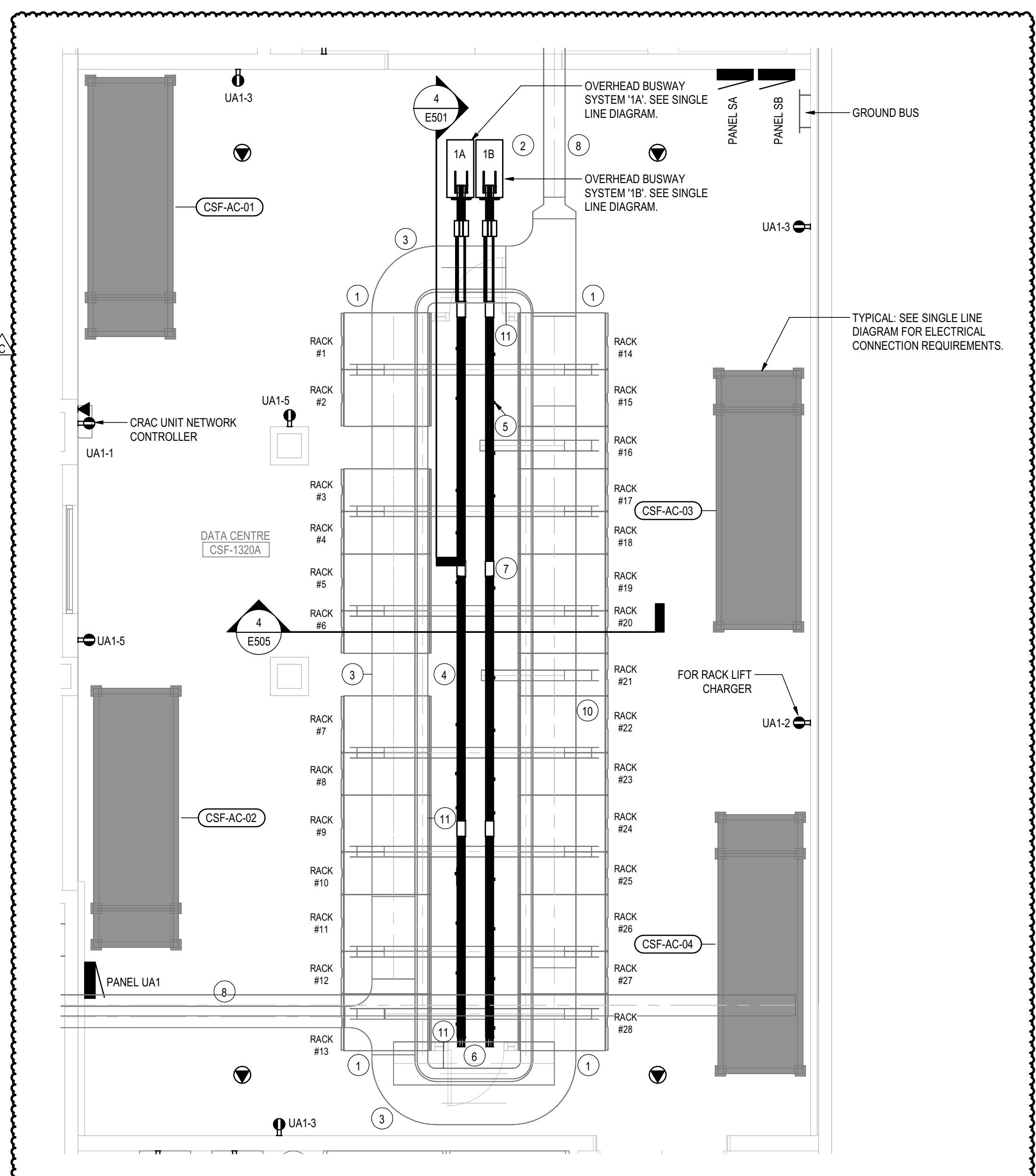
This University was raised by the people of Newfoundland as a memorial to the fallen in the great wars, 1914-1918, 1939-1945, that in freedom of learning, their cause and sacrifice might not be forgotten.

- Dedication plaque, Arts & Administration Building, St. John's Campus

PROJECT NAME: PRIMARY DATA CENTRE REPLACEMENT

CORE SCIENCE FACILITY
ST. JOHN'S, NL

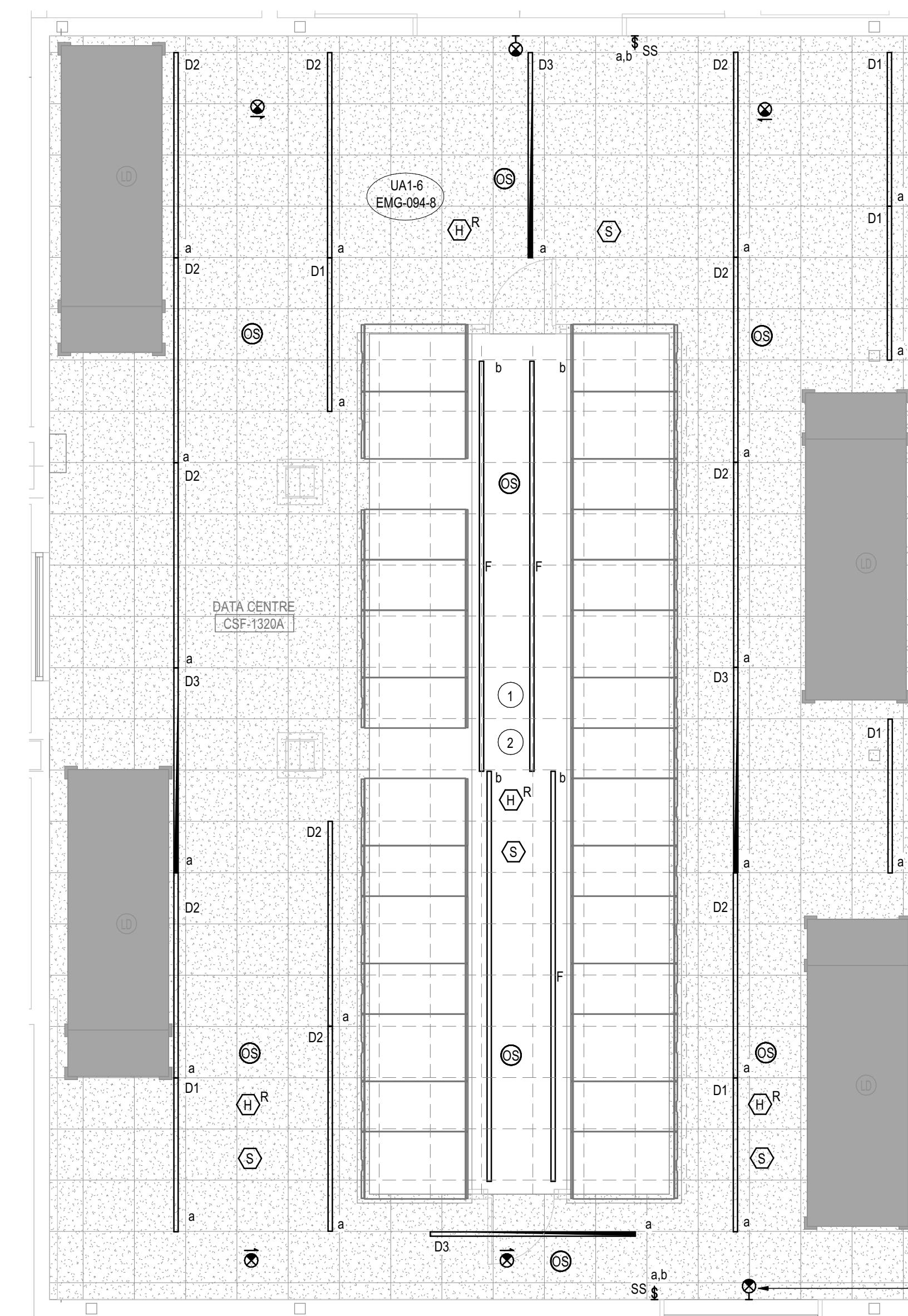
MUN Project #: CSF-004-23


DRAWING TITLE:

ENLARGED FLOOR PLANS - DATA CENTRE

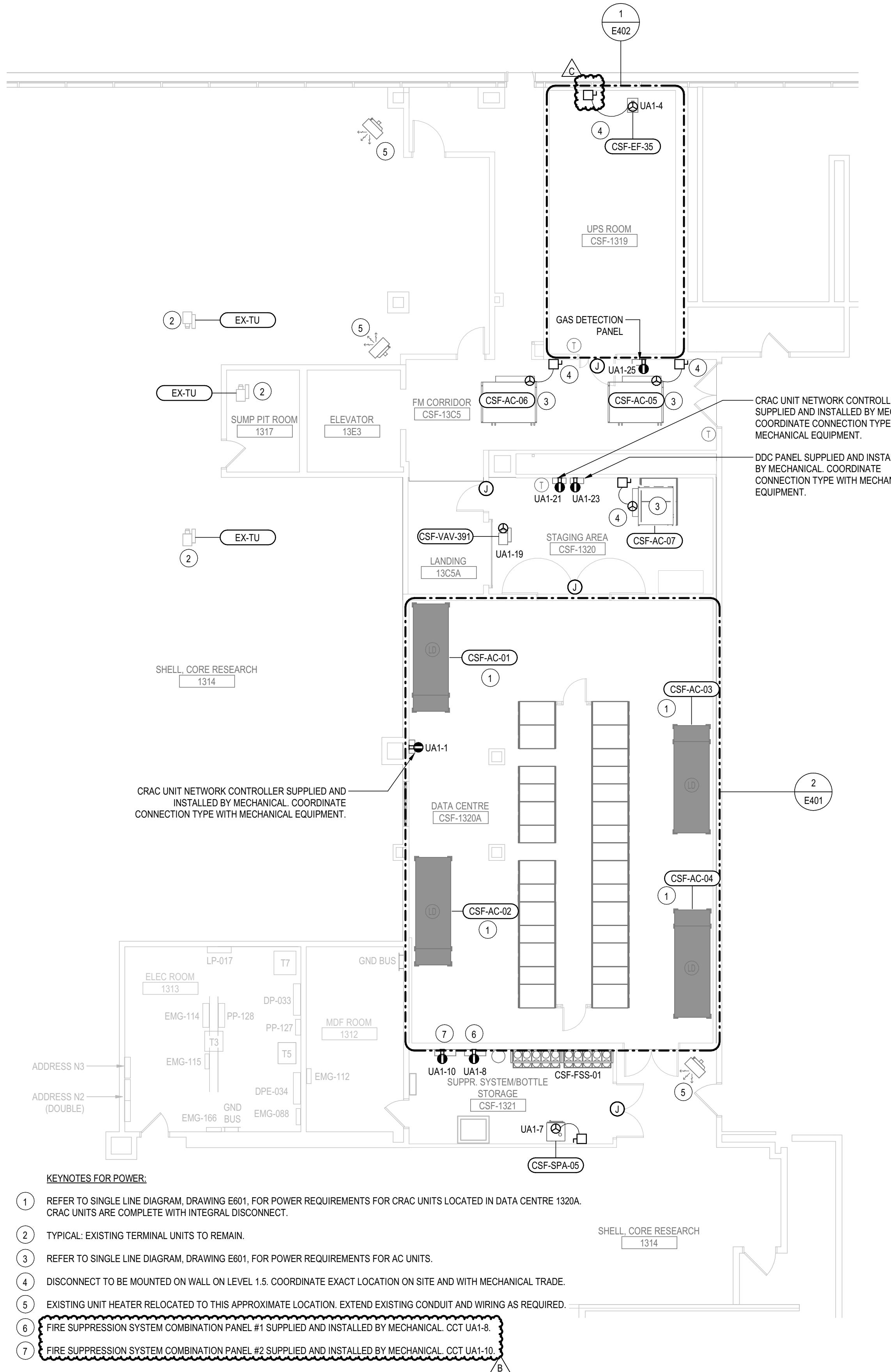
DESIGNED:	MG/JD	DRAWN:	MG/JD
REVIEWED:	-	APPROVED:	BR
SCALE:	1 : 50	DATE:	SEPTEMBER, 2025

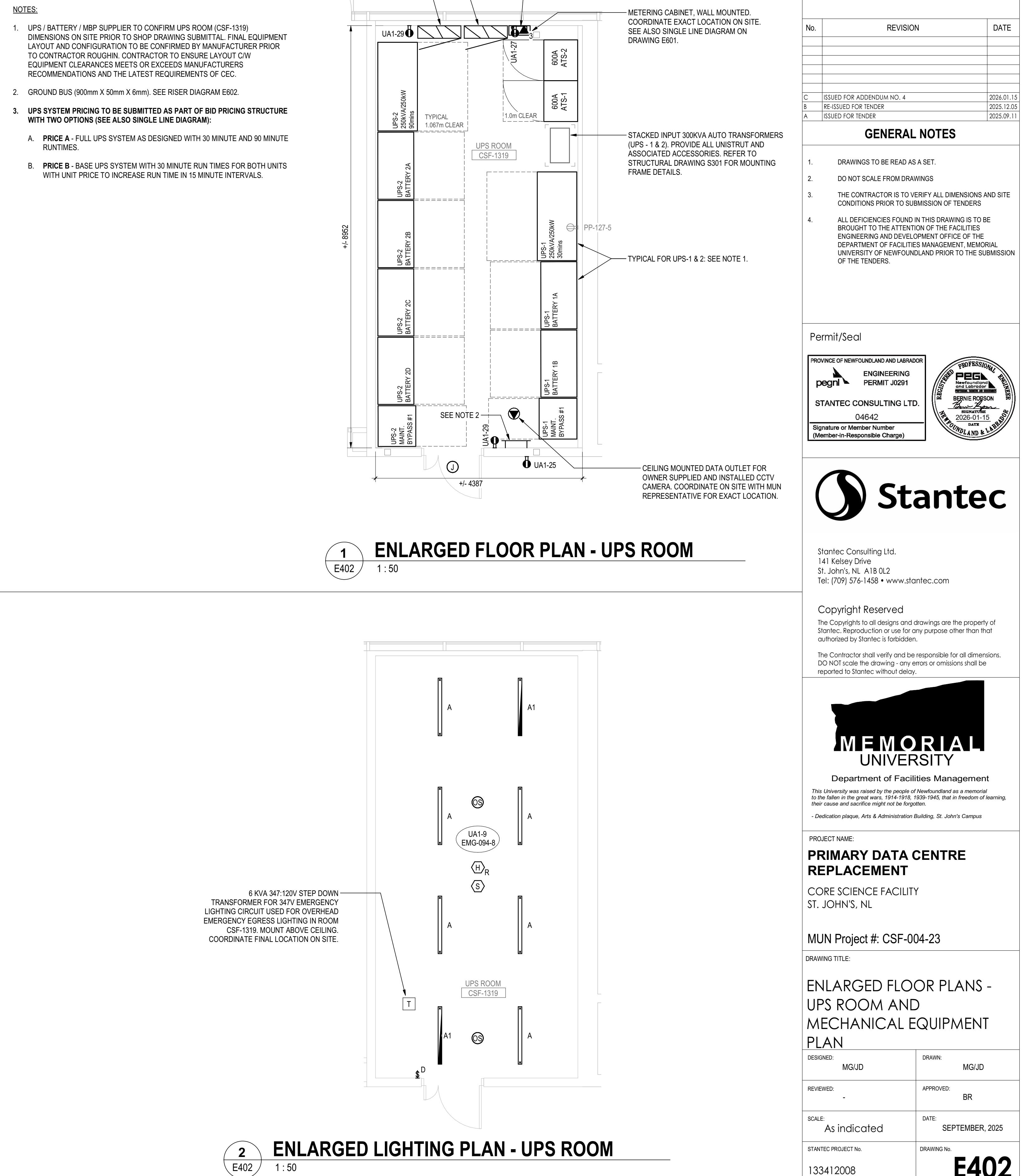
STANTEC PROJECT No. 133412008 DRAWING No. E401


E401

NOTES:

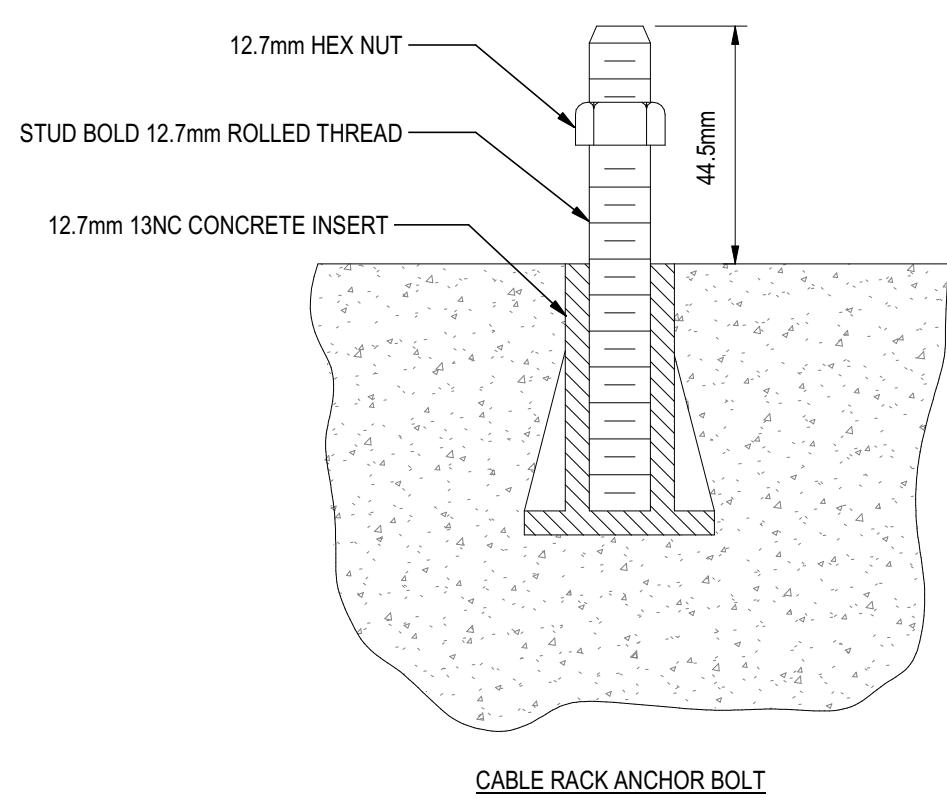
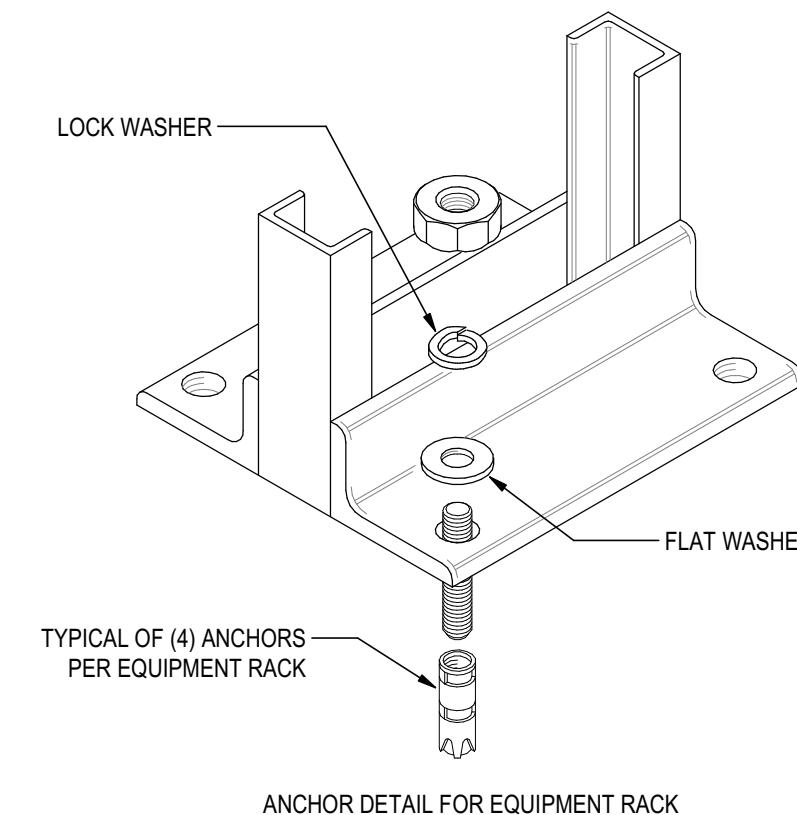
- 1 CABLE TRAY TO PENETRATE HOT AISLE CONTAINMENT ENCLOSURE. COORDINATE WITH CONTAINMENT SYSTEM PANELS TO ENSURE IT IS PROPERLY SEALED.
- 2 CABLE END FEEDS FOR POWER BUSWAY RAIL SYSTEM. INSTALL ABOVE STRUCTURAL GRID. TO BE SUPPORTED FROM STRUCTURE ABOVE.
- 3 TWO TIERS OF 60mm W X 100mm H BASKET TYPE CABLE TRAYS C/W TWO (2) 100mm DIVIDERS PER TRAY. CABLE TRAYS TO BE FACTORY PAINTED WHITE. TRAYS TO BE SUPPORTED FROM STRUCTURAL CEILING GRID SYSTEM. SEE DETAIL 2, DRAWING E502.
- 4 POWER BUSWAY SYSTEM RAILS. PROVIDE LENGTHS OF RAIL REQUIRED TO EXTEND LENGTH OF DATA RACKS AND EXTEND TO CABLE END FEEDS. TO BE SUPPORTED FROM STRUCTURE USING BUSWAY SYSTEM HANGERS.
- 5 POWER BUSWAY SYSTEM TAP OFF BOX. SEE ALSO SINGLE LINE DIAGRAM.
- 6 POWER BUSWAY END CAP REQUIRED AT THE END OF EACH POWER BUSWAY RAIL SYSTEM.
- 7 TYPICAL: POWER BUSWAY COUPLER TO CONNECT SECTIONS OF POWER BUSWAY RAIL SYSTEM TOGETHER.
- 8 SINGLE RUN OF 305 mm W X 100mm H BASKET TYPE CABLE TRAY TO EXTEND TO MDF AND STAGING ROOM. TO BE SUPPORTED BY STRUCTURAL CEILING GRID. TRAY TO BE FACTORY PAINTED WHITE. SEE DETAIL 2, DRAWING E502.
- 9 DATA RACK ENCLOSURES TO BE SECURED TO CONCRETE PAD USING ANCHOR BOLTS. REFER TO DETAIL 3, DRAWING E501.
- 10 TYPICAL: SINGLE RUN OF 153mm W X 100mm H BASKET TYPE CABLE TRAY TO EXTEND OVER TOP OF DATA RACKS FOR MANAGEMENT OF PDU POWER CORDS. TO BE COMPLETE WITH WATERFALL TYPE FITTINGS TO ALLOW FOR VERTICAL TRANSITION DOWN TO DATA RACKS. TRAY TO MOUNTED AND SECURED TO TOP OF STRUCTURAL CEILING GRID. SEE DETAILS ON DRAWINGS E501 AND E502.
- 11 153 mm W X 100mm H BASKET TYPE CABLE TRAY. TO BE SUPPORTED BY STRUCTURAL CEILING GRID. TRAY TO BE FACTORY PAINTED WHITE.


2 ENLARGED POWER AND DATA PLAN - DATA CENTRE 1320A
E401 1:50

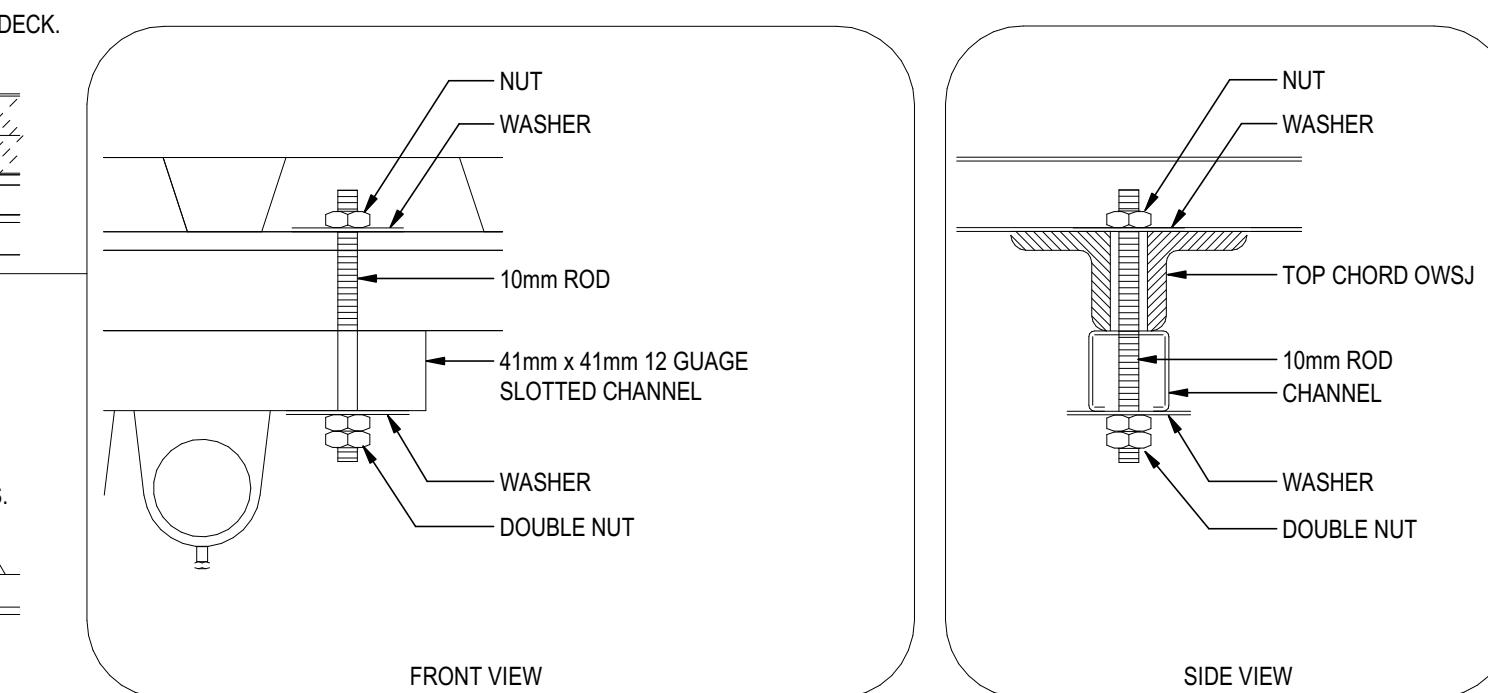
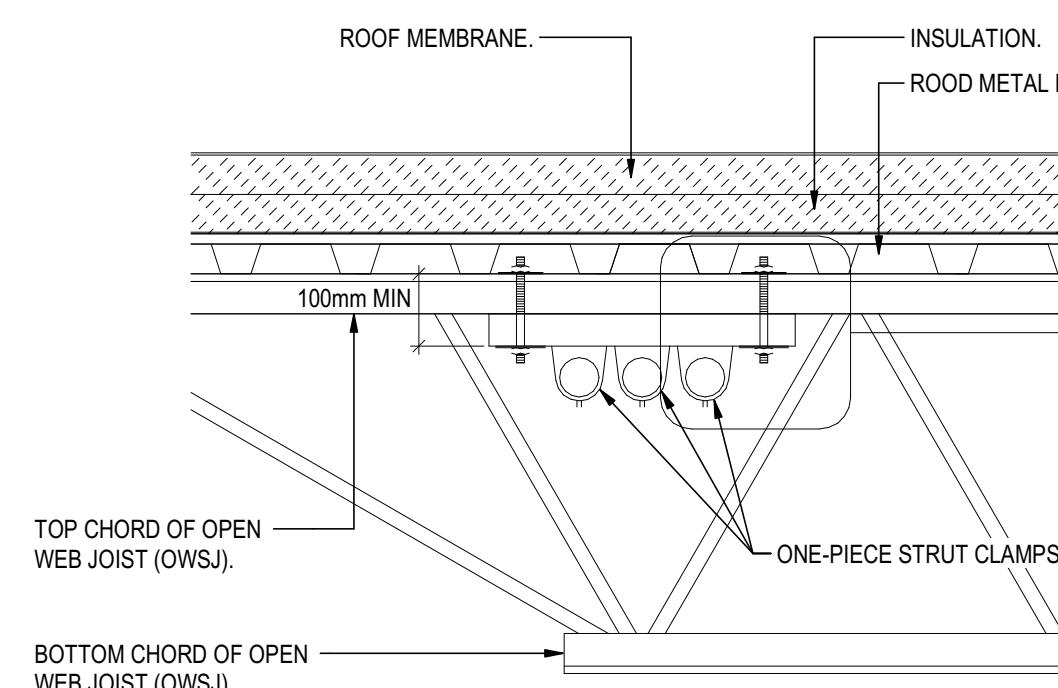

NOTES:

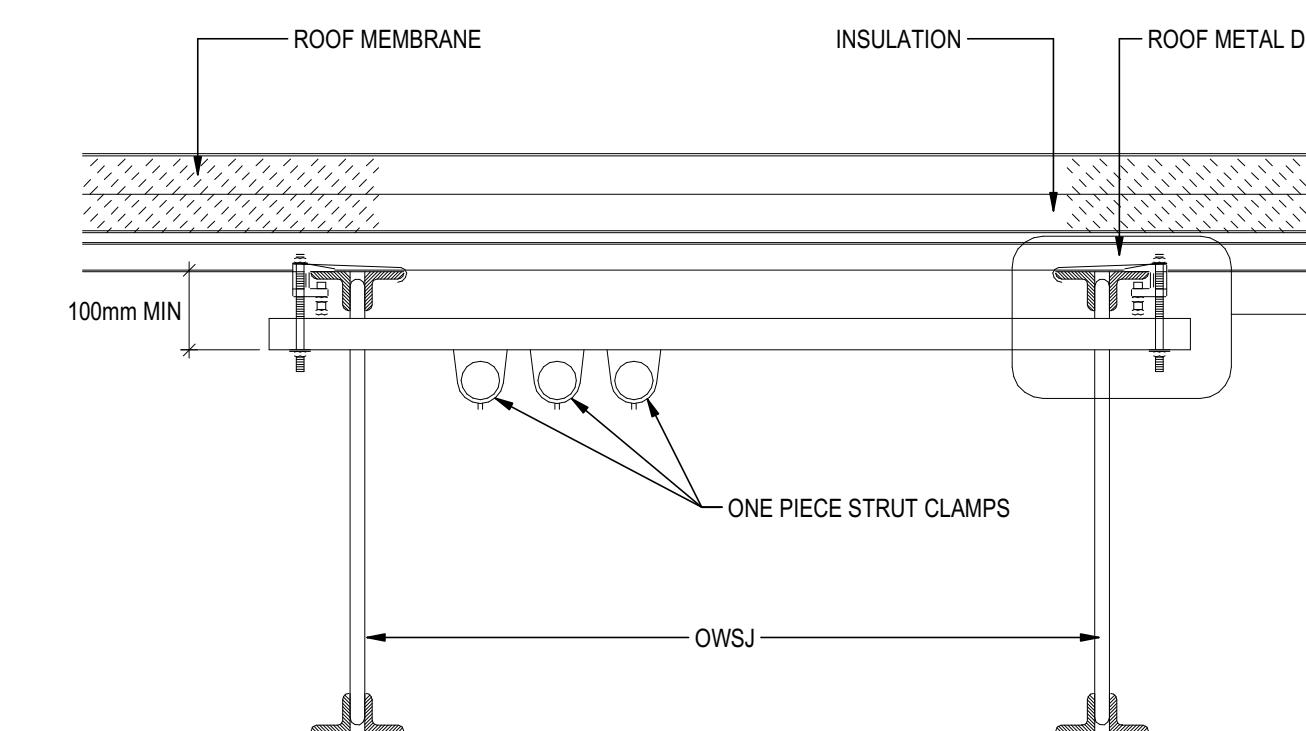
- 1 TYPICAL: LIGHTING FIXTURES ARE LAID OUT TO ACCOMODATE EQUIPMENT AND HVAC INSTALLATIONS. COORDINATE CONFLICTS ON SITE.
- 2 CEILING TILES INSIDE OF HOT AISLE CONTAINMENT ENCLOSURE TO NOT BE INSTALLED. GRID TO REMAIN FOR SUPPORT OF CABLE TRAYS.
- 3 REFER TO DRAWING E506 FOR LIGHTING SEQUENCE OF OPERATIONS.

1 ENLARGED LIGHTING PLAN - DATA CENTRE 1320A
E401 1:50

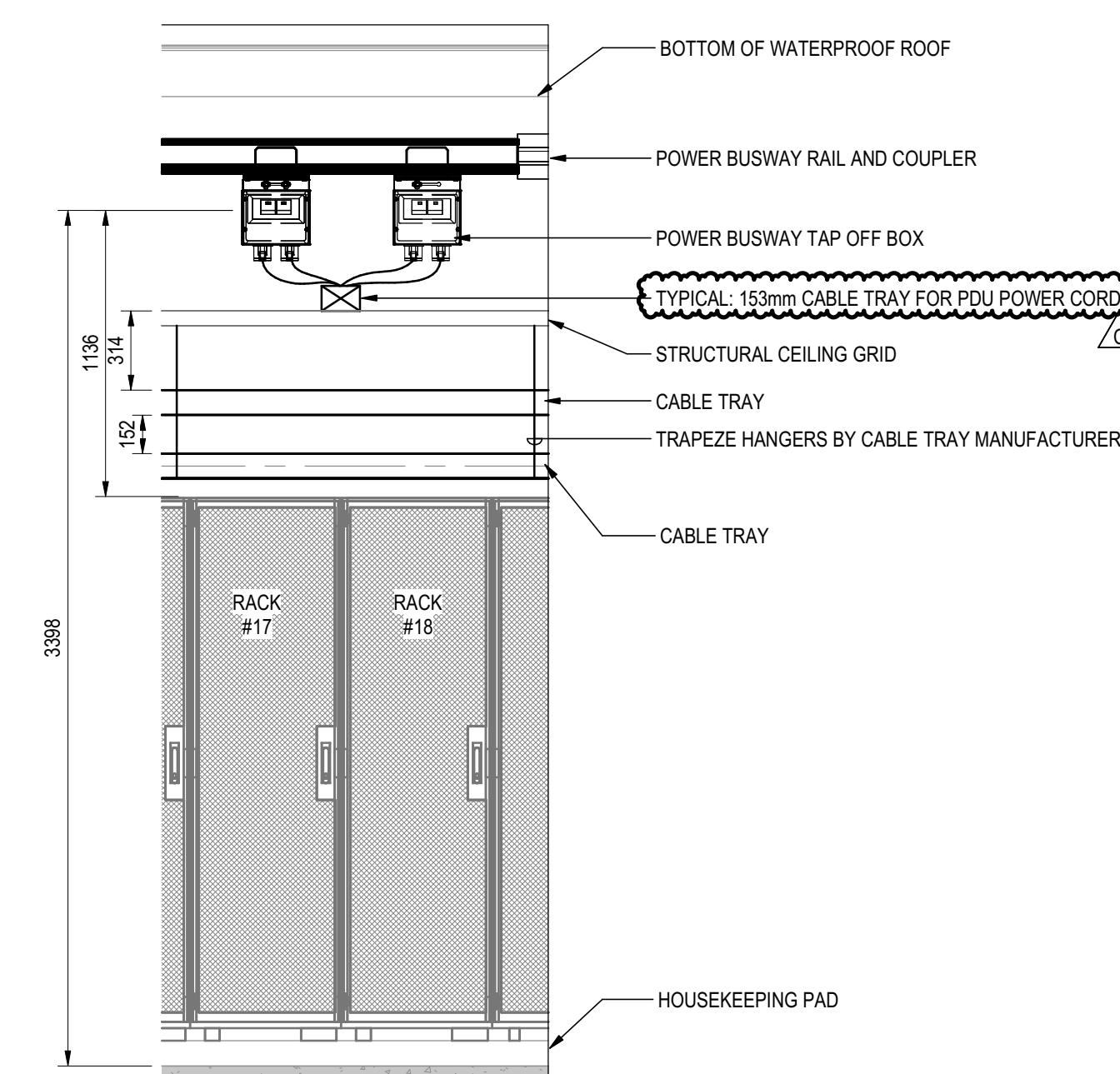
3 E402 MECHANICAL EQUIPMENT FLOOR PLAN LAYOUT - LEVEL 1
1 : 100



1 TYPICAL CABINET CABLING DETAIL
E501 N.T.S.

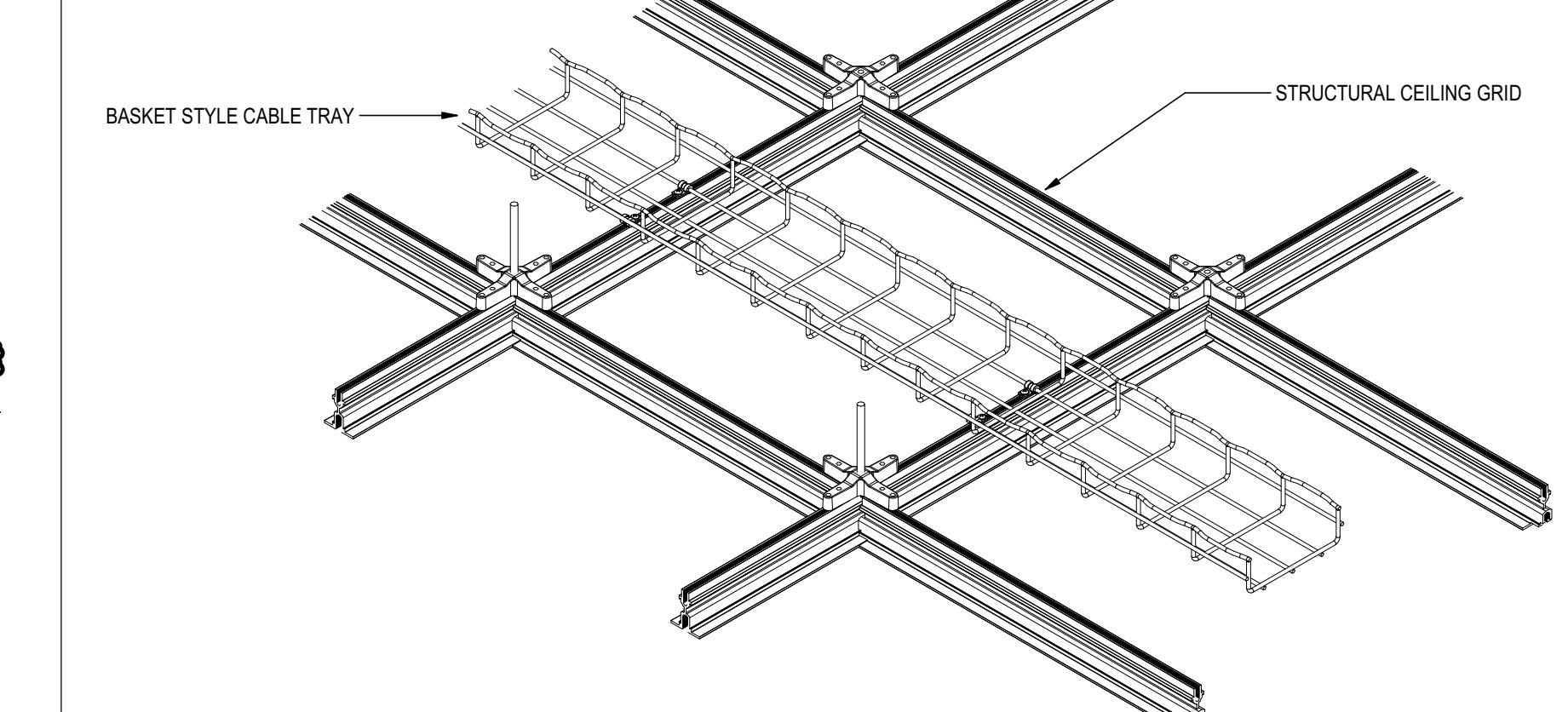

3 ANCHOR BOLT
E501 N.T.S.

GENERAL NOTES:

- DO NOT ATTACH CONDUITS, BOXES, ETC. OR ANY OTHER EQUIPMENT DIRECTLY TO UndERSIDE OF ROOF STRUCTURE. MAINTAIN A MINIMUM CLEARANCE of 100mm FROM THE LOWEST PART OF THE ROOF DECK TO THE EQUIPMENT.
- DO NOT SUPPORT CONDUIT FROM WEB OF JOIST.
- MAXIMUM of 27mm CONDUIT(S) ARE ALLOWED TO BE ATTACHED TO JOIST BOTTOM CHORD.
- MOUNT ASSEMBLY AS HIGH AS POSSIBLE, BUT MAINTAIN MIN 100mm BELOW ROOF DECK. DO NOT INTERFERE WITH WORK OF OTHER TRADES, BLOCK AIR DUST, FIRE PROTECTION OUTLETS OR LIGHT FIXTURES.
- DO NOT EXCEED 100LBS PER POINT LOAD AT TOP CHORD OF JOIST.

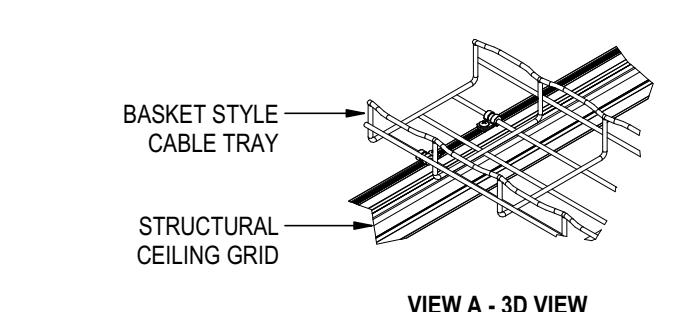


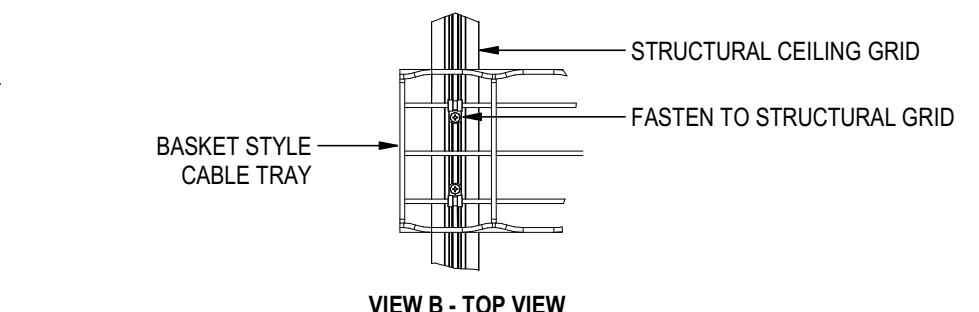
CONDUITS INSTALLED PERPENDICULAR TO OPEN WEB STEEL JOISTS (OWSJ)



CONDUITS INSTALLED PARALLEL TO OPEN WEB STEEL JOISTS (OWSJ)


2 TYPICAL CONDUIT INSTALLATION
E501 N.T.S.


4 POWER BUSWAY ELEVATION DETAIL
E501 1:25


VIEW D - 3D VIEW OF TYPICAL INSTALLATION

VIEW C - TYPICAL SECTION VIEW

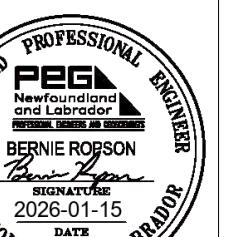
VIEW A - 3D VIEW

VIEW B - TOP VIEW

5 TOP MOUNTED CABLE TRAY DETAILS
E501 N.T.S.

A - DETAIL
B - LOCATION/DRAWING No.
C - DRAWING No.

A
B
C


No.	REVISION	DATE
C	ISSUED FOR ADDENDUM NO. 4	2026.01.15
B	RE-ISSUED FOR TENDER	2025.12.05
A	ISSUED FOR TENDER	2025.09.11

GENERAL NOTES

- DRAWINGS TO BE READ AS A SET.
- DO NOT SCALE FROM DRAWINGS.
- THE CONTRACTOR IS TO VERIFY ALL DIMENSIONS AND SITE CONDITIONS PRIOR TO SUBMISSION OF TENDERS.
- ALL DEFICIENCIES FOUND IN THIS DRAWING IS TO BE BROUGHT TO THE ATTENTION OF THE FACILITIES ENGINEERING AND DEVELOPMENT OFFICE OF THE DEPARTMENT OF FACILITIES MANAGEMENT, MEMORIAL UNIVERSITY OF NEWFOUNDLAND PRIOR TO THE SUBMISSION OF THE TENDERS.

Permit/Seal

PROVINCE OF NEWFOUNDLAND AND LABRADOR
ENGINEERING PERMIT J0291
STANTEC CONSULTING LTD.
04642
Signature or Member Number
(Member-in-Responsible Charge)

Stantec Consulting Ltd.
141 Kelsey Drive
St. John's, NL A1B 0L2
Tel: (709) 576-1458 • www.stantec.com

Copyright Reserved

The Copyright to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay.

Department of Facilities Management
This University was raised by the people of Newfoundland as a memorial to the fallen in the great wars, 1914-1918 1939-1945, that in freedom of learning, their cause and sacrifice might not be forgotten.

- Dedication plaque, Arts & Administration Building, St. John's Campus

PROJECT NAME:
PRIMARY DATA CENTRE REPLACEMENT

CORE SCIENCE FACILITY
ST. JOHN'S, NL

MUN Project #: CSF-004-23

DRAWING TITLE:

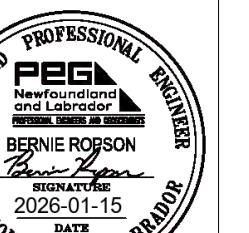
ELECTRICAL DETAILS

DESIGNED:	MG/JD	DRAWN:	MG/JD
REVIEWED:		APPROVED:	BR
SCALE:	As indicated	DATE:	SEPTEMBER, 2025

STANTEC PROJECT No.
133412008

DRAWING No.
E501

A - DETAIL
B - LOCATION/DRAWING No.
C - DRAWING No.


No.	REVISION	DATE
C	ISSUED FOR ADDENDUM NO. 4	2026.01.15
B	RE-ISSUED FOR TENDER	2025.12.05
A	ISSUED FOR TENDER	2025.09.11

GENERAL NOTES

1. DRAWINGS TO BE READ AS A SET.
2. DO NOT SCALE FROM DRAWINGS
3. THE CONTRACTOR IS TO VERIFY ALL DIMENSIONS AND SITE CONDITIONS PRIOR TO SUBMISSION OF TENDERS
4. ALL DEFICIENCIES FOUND IN THIS DRAWING IS TO BE BROUGHT TO THE ATTENTION OF THE FACILITIES ENGINEERING AND DEVELOPMENT OFFICE OF THE DEPARTMENT OF FACILITIES MANAGEMENT, MEMORIAL UNIVERSITY OF NEWFOUNDLAND PRIOR TO THE SUBMISSION OF THE TENDERS.

Permit/Seal

PROVINCE OF NEWFOUNDLAND AND LABRADOR
ENGINEERING PERMIT J0291
STANTEC CONSULTING LTD.
04642
Signature or Member Number (Member-in-Responsible Charge)

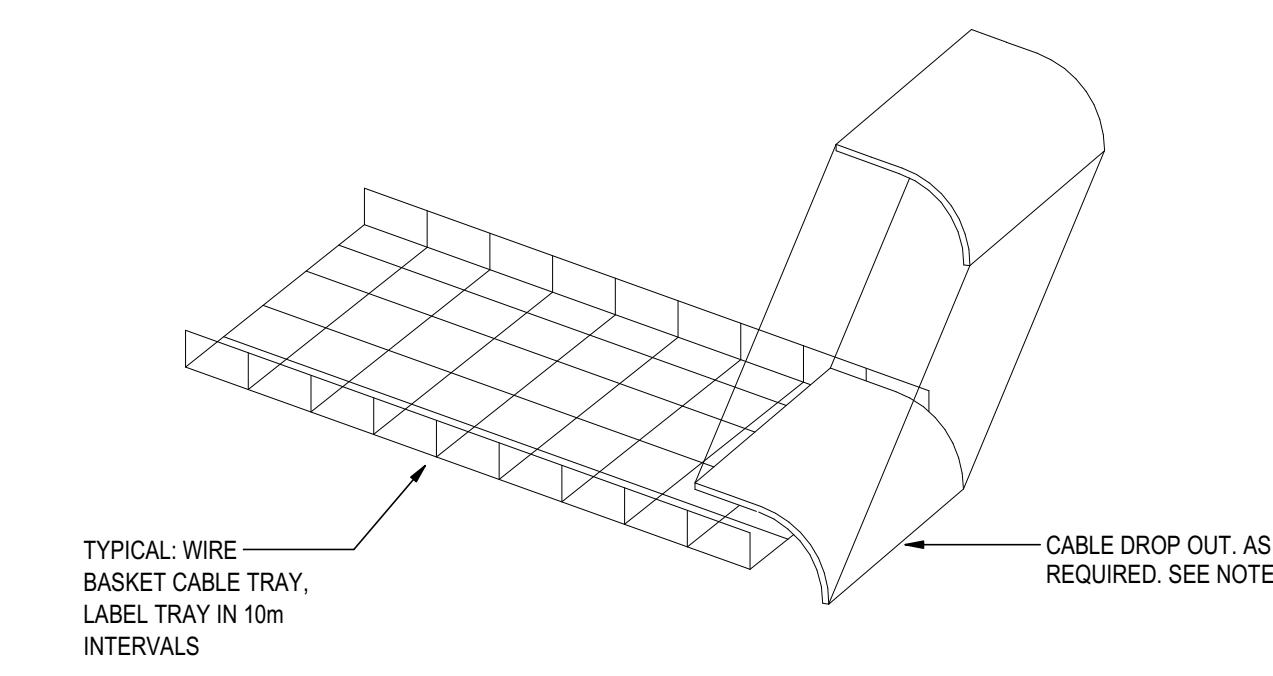
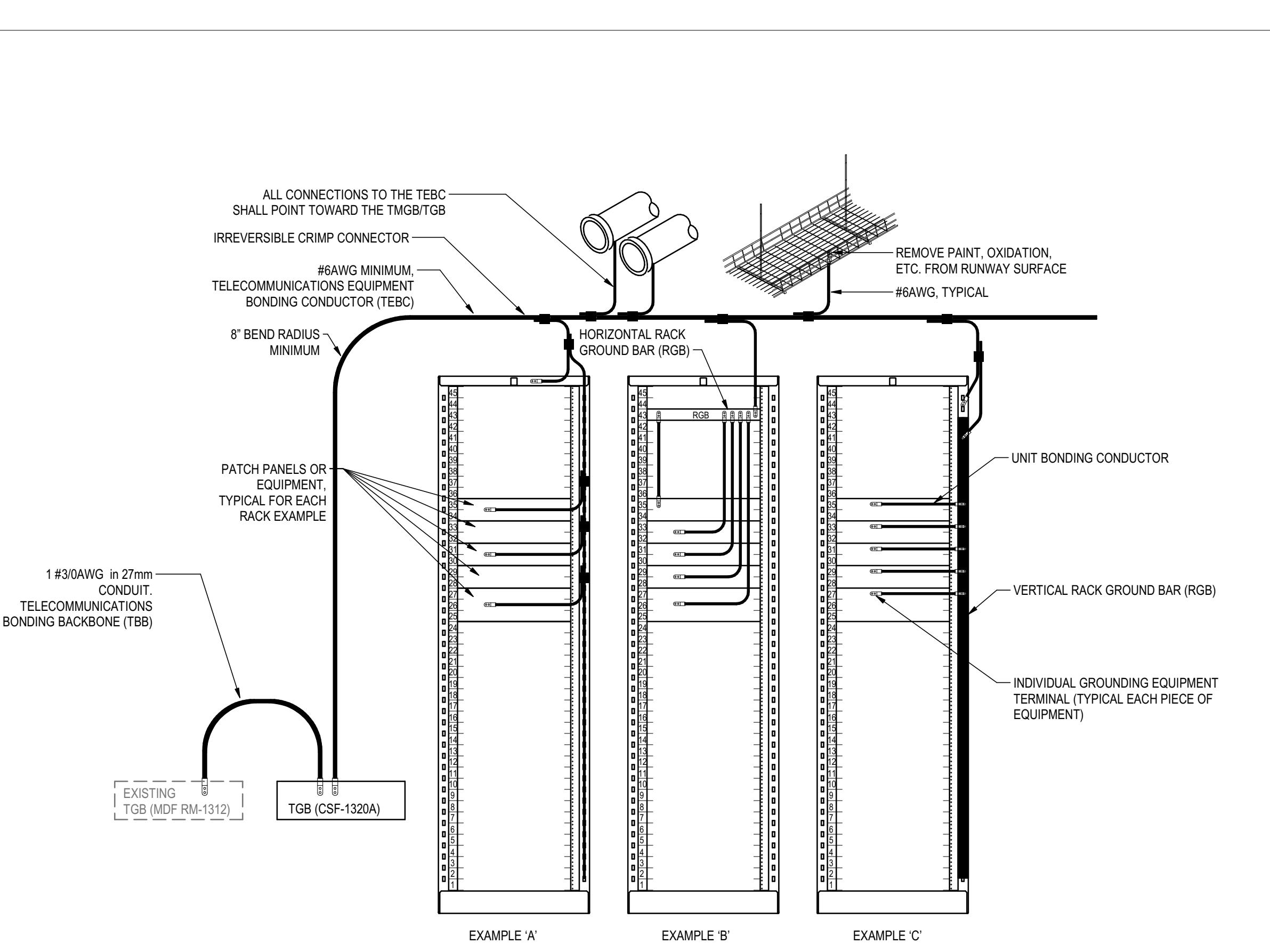
Stantec Consulting Ltd.
141 Kelsey Drive
St. John's, NL A1B 0L2
Tel: (709) 576-1458 • www.stantec.com

Copyright Reserved
The Copyright to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay.

MEMORIAL
UNIVERSITY
Department of Facilities Management
This University was raised by the people of Newfoundland as a memorial to the fallen in the great wars, 1914-1918 1939-1945, that in freedom of learning, their cause and sacrifice might not be forgotten.
- Dedication plaque, Arts & Administration Building, St. John's Campus

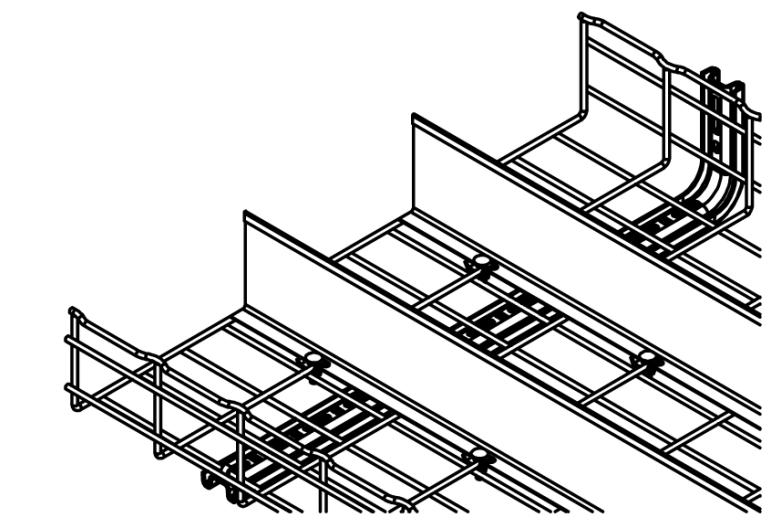
PROJECT NAME: PRIMARY DATA CENTRE REPLACEMENT

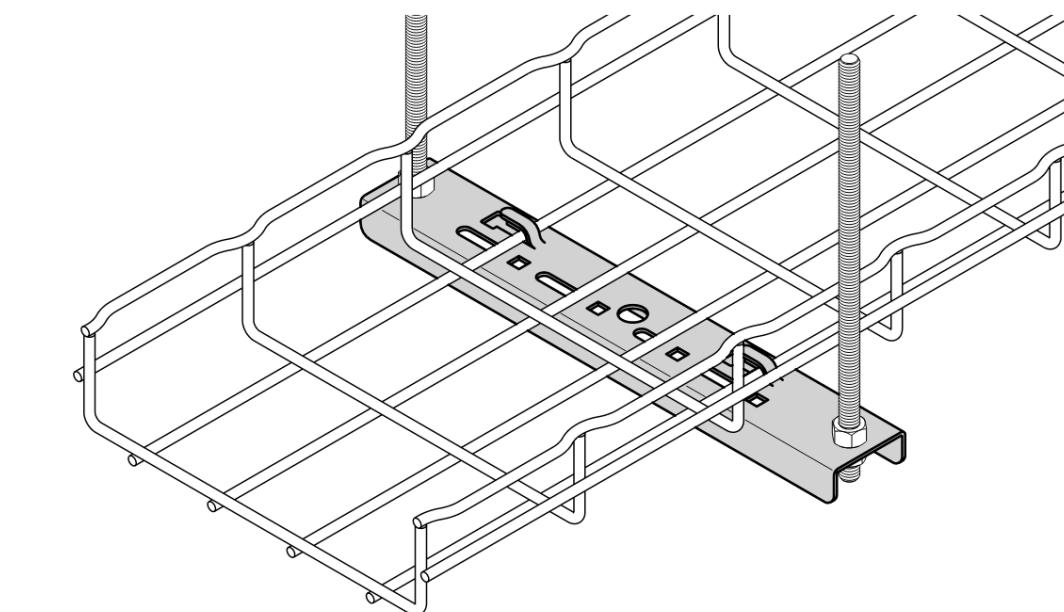


CORE SCIENCE FACILITY
ST. JOHN'S, NL

MUN Project #: CSF-004-23

DRAWING TITLE:

ELECTRICAL DETAILS


DESIGNED:	MG/JD	DRAWN:	MG/JD
REVIEWED:		APPROVED:	BR
SCALE:	As indicated	DATE:	SEPTEMBER, 2025
STANTEC PROJECT No.	133412008	DRAWING No.	E502

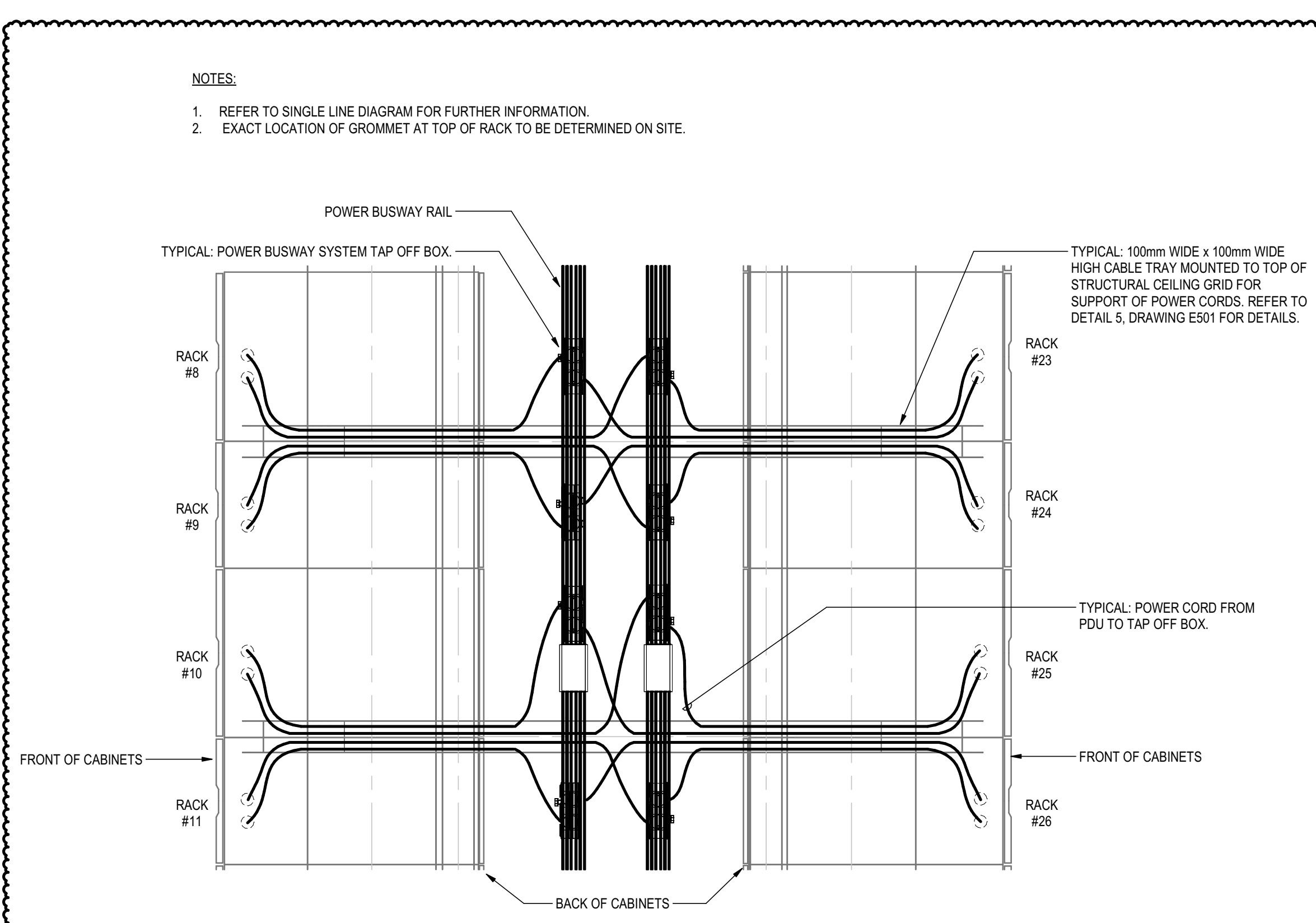

NOTES:

1. CABLETRAY DROP-OUTS PROVIDE A ROUNDED SURFACE WITH ADEQUATE RADIUS TO PROTECT CABLE AS IT EXITS FROM TRAY, PREVENTING DAMAGE TO INSULATION. THE LADDER DROP-OUT WILL ATTACH TO WIRE BASKET. SEE MANUFACTURERS INSTALLATION REQUIREMENTS.
2. PROVIDE ADJUSTABLE SPLICE PLATES AT CABLE TRAY HORIZONTAL BENDS/TEES AS REQUIRED BY MANUFACTURER. SEE PLANS FOR TRAY ROUTING AND BENDS/TEES.

VIEW C - CABLE DROP OUT FITTING

VIEW A - DIVIDERS

VIEW B - WIRE BASKET TRAPEZE HANGER


NOTE:

1. DOUBLE TIER CABLE TRAY INSTALLATION IS ONLY REQUIRED WITHIN THE HOT AISLE ENCLOSURE. ONLY ONE TIER OF CABLE TRAY TO BE INSTALLED OUTSIDE OF HOT AISLE ENCLOSURE TO MDF AND STAGING ROOMS.

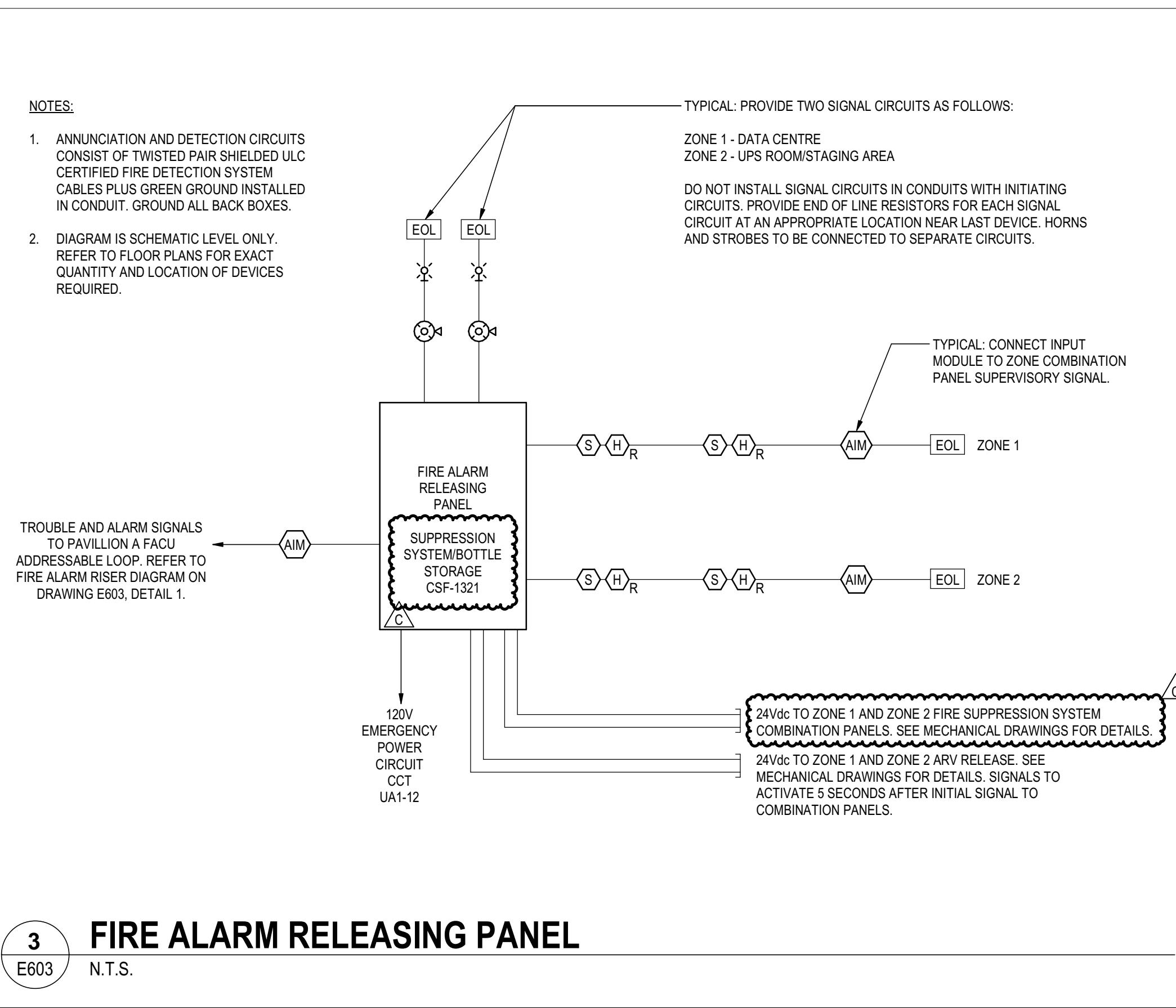
1 TYPICAL: TELECOMMUNICATIONS SYSTEM GROUNDING REQUIREMENTS

E502

N.T.S.

3 POWER BUSWAY CONNECTION DETAIL

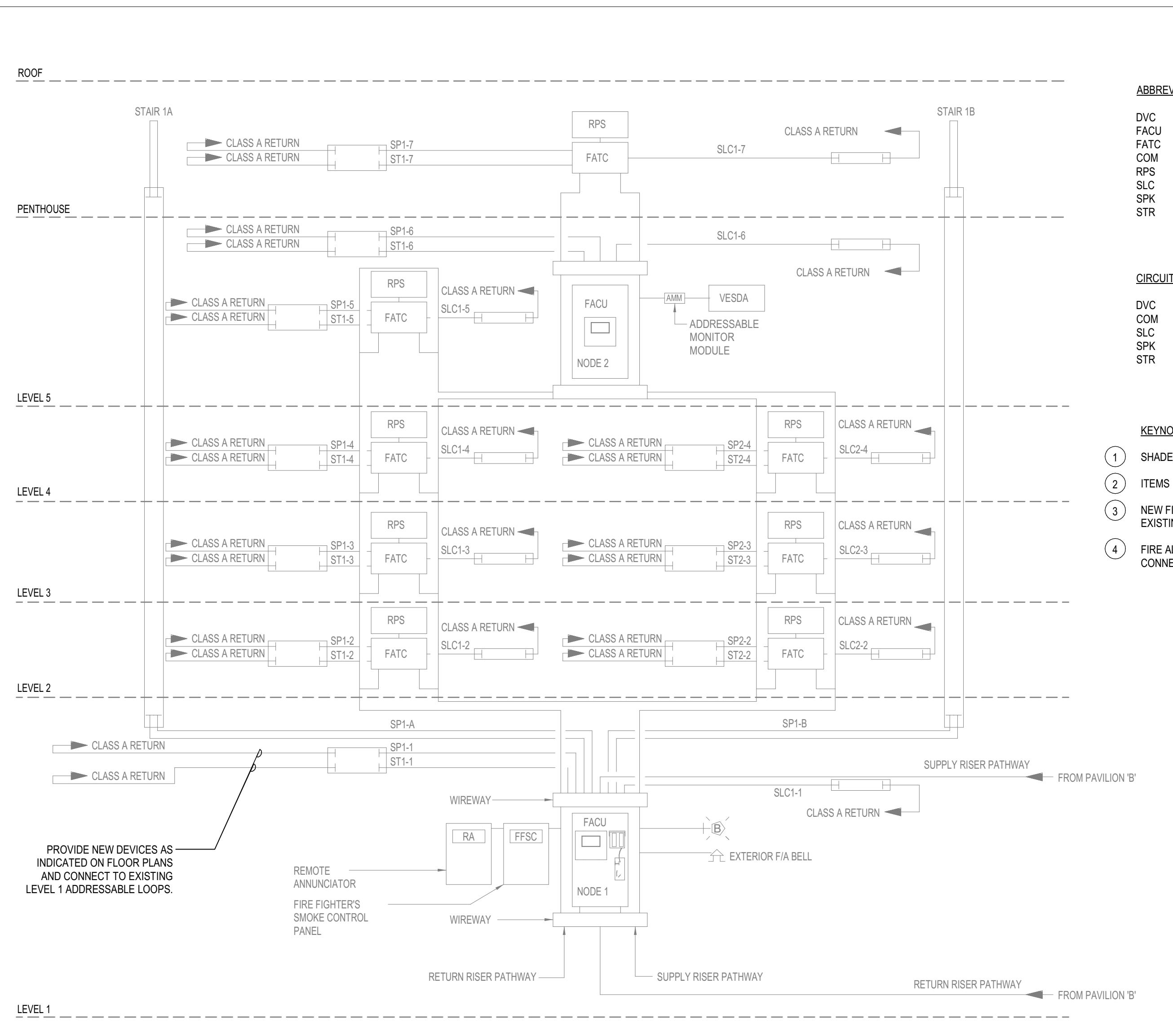
E502


N.T.S.

2 CABLE TRAY INSTALLATION DETAIL

E502

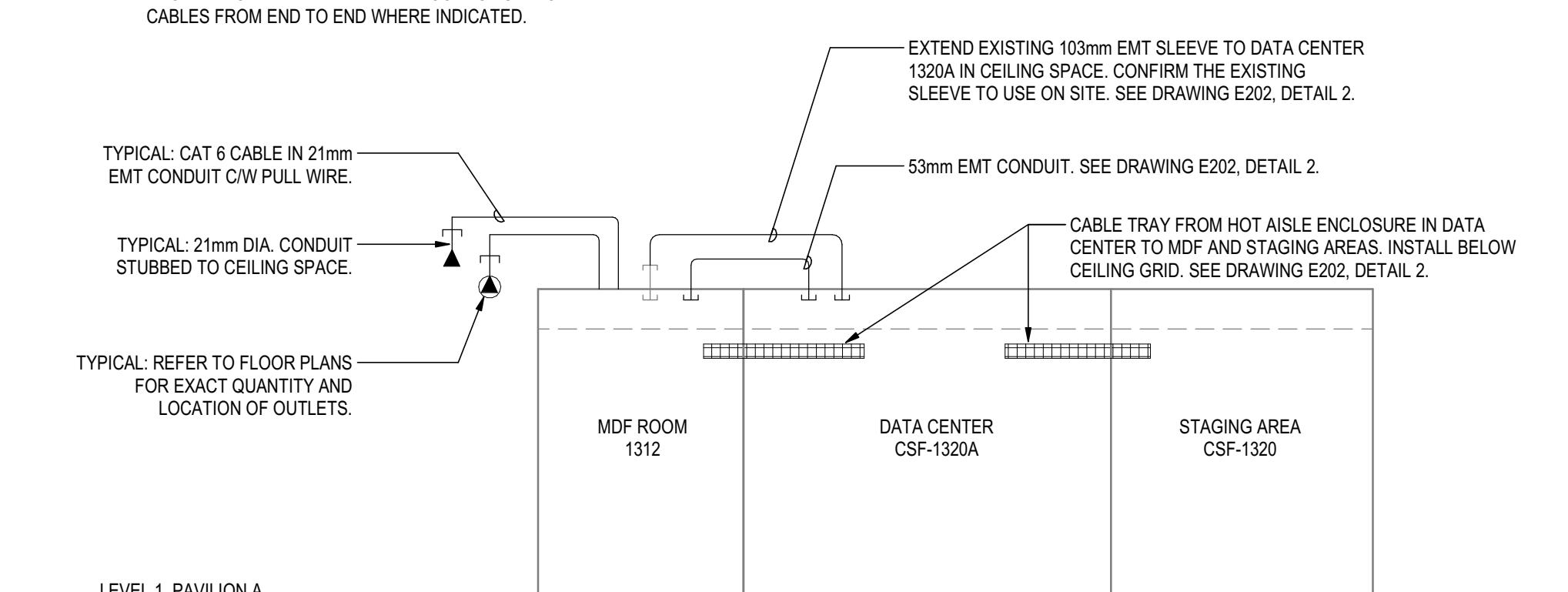
N.T.S.

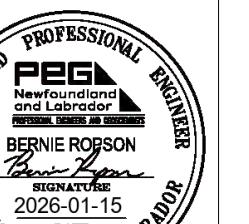
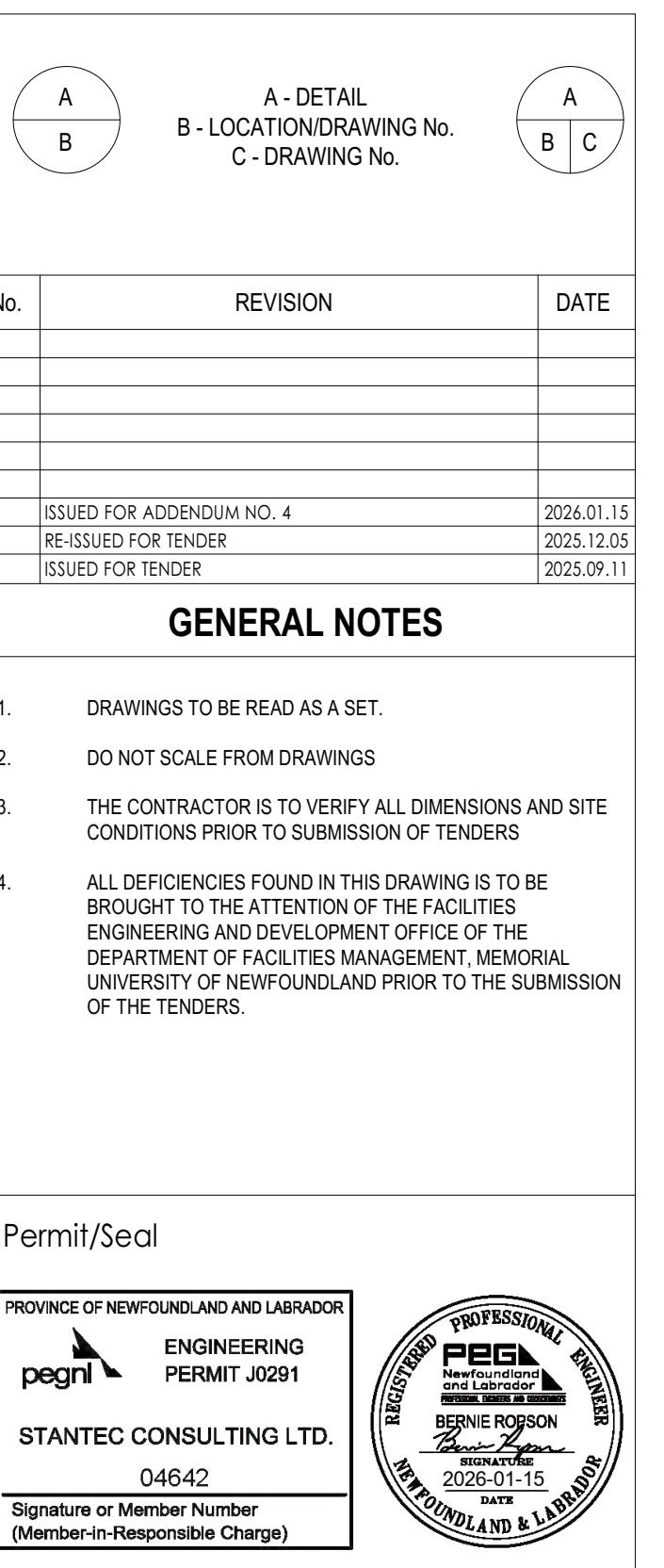


FIRE ALARM RELEASING PANEL

E603 N.T.S.

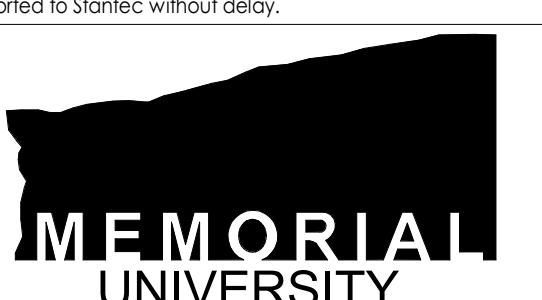
N.T.S.


N.T.S.



1
E603 P
N.T.

E603 N.T.

1 2 3 4


PARTIAL DATA RISER DIAGRAM

Stantec Consulting Ltd.
141 Kelsey Drive
St. John's, NL A1B 0L2
Tel: (709) 576-1458 • www.stantec.com

Copyright Reserved
The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

The Contractor shall verify and be responsible for all dimensions.
DO NOT scale the drawing - any errors or omissions shall be

UNIVERSITY

Department of Facilities Management

This University was raised by the people of Newfoundland as a memorial to the fallen in the great wars, 1914-1918, 1939-1945, that in freedom of learning, their cause and sacrifice might not be forgotten.

For more information, contact the Office of the Vice President for Research and the Office of the Vice President for Student Affairs.

PROJECT NAME: **PRIMARY DATA CENTRE
REPLACEMENT**

REPLACEMENT CORE SCIENCE FACILITY ST. JOHN'S, NL

DRAWING TITLE:

FIRE ALARM AND DATA READING DIAGRAM

DESIGNED: MG/JD	DRAWN: MG/JD
REVIEWED: -	APPROVED: BR
SCALE: N.T.S.	DATE: SEPTEMBER, 2025
STANTEC PROJECT No. 133412008	DRAWING No. E603

PART 1 **GENERAL**

1.1 SUMMARY

.1 Section Includes

.1 General requirements relating to commissioning of project's components and systems, specifying general requirements for Installation Verification and Performance Verification of components, equipment, sub-systems, systems, and integrated systems.

.2 Acronyms

- .1 CxA – Commissioning Authority.
- .2 Cx – Commissioning.
- .3 EMCS – Energy Monitoring and Control Systems.
- .4 O&M – Operation and Maintenance.
- .5 PV – Performance Verification.
- .6 TAB – Testing, Adjusting and Balancing.
- .7 GC – General Contractor
- .8 TSI – Technical Services Inspector

1.2 COMMISSIONING INTENT

- .1 Undertake Cx to bring the facility to a fully operational state and free of deficiencies in the most effective and timely manner available, ensuring the design intent is met by all systems.
- .2 Cx incorporates inspection and quality assurance activities as construction progresses, including start up, installation verification, performance verification, fine tuning, and operator training.
- .3 Bear all costs associated with the required personnel and test equipment as outlined in specification sections and CxA provided Cx Manual and all costs with organizing and managing the activities of the applicable subtrades as identified in this section.
- .4 Fully document all tests and inspections performed during the construction, at start up, installation verification and performance verification and fine tuning. Incorporate into final commissioning documentation.
- .5 Provide direct training to designated staff responsible for the operation and maintenance of the building equipment and systems.

1.3 RELATED SECTIONS

- .1 Section 01 45 00 - Quality Control.
- .2 Section 01 77 00 - Closeout Procedures.
- .3 Section 01 78 00 - Closeout Submittals.
- .4 Section 01 79 00.13 – Demonstration and Training for Building Commissioning.
- .5 Section 01 91 13.16 - Commissioning (Cx) Forms.

1.4 COMMISSIONING OVERVIEW

- .1 Cx is a planned program of tests, procedures and checks carried out systematically on systems and integrated systems of the finished project.
- .2 Cx is an intensive quality assurance process that begins at the beginning of the project and continues through to the first year of occupancy. The process focuses upon verifying and documenting that the facility and all of its systems and assemblies are planned, designed, installed, tested, operated, and maintained to meet the Owner's Representatives Project Requirements.
- .3 Cx activities supplement field quality and testing procedures described in relevant technical sections.
- .4 Cx ensures the built facility is constructed and proven to operate satisfactorily under weather, environmental and occupancy conditions to meet functional and operational requirements. Cx activities include transfer of critical knowledge to facility operational personnel.
- .5 Complete inspection and verification activities as required by the specifications and CxA provided Cx Manual as construction progresses.
- .6 Take responsibility to:
 - .1 Review the Cx manual with the commissioning team.
 - .2 Complete all items as identified in the Cx manual. This includes work by subcontractors, test agencies, equipment representatives and manufacturer agents.
 - .3 Review Contract Documents and inspect the Work to ensure completeness of the Work and compliance with the Contract Documents.
 - .4 Correct deficiencies resulting from installation and performance verifications.

- .5 Test, adjust and balance equipment and systems identified in Divisions 2-44.
- .6 Submit the completed manual and project record documents as specified.
- .7 Update the documentation manuals prior to each project meeting.
- .7 The Substantial Completion Certificate will not be issued until the commissioning process is completed and the final reports and commissioning documentation are received.
- .8 The CxA shall prepare a Cx Manual that provides direction for the Cx process during construction, provides resolution for issues such as scheduling, roles and responsibilities, lines of communication and reporting, approvals and coordination.
- .9 The commissioning process shall be conducted in accordance with the principles and framework outlined in CSA Z320 – Building Commissioning – 2011 (R2021).
- .10 Integrated systems testing to be completed in accordance with CAN/ULC S1001 – Standard for Integrated Systems Testing of Fire Protection and Life Safety Systems – 2011 (Rev 2)

1.5 COMMISSIONING TEAM

- .1 The commissioning team shall consist of:
 - .1 Department Representative(s):
 - .1 Project Coordinator (PC).
 - .2 Engineer/Architect/Consultant (AE).
 - .3 Technical Services Inspectors (TSI).
 - .2 User Representatives/Owner's Representative.
 - .3 General Contractor (GC):
 - .1 Mechanical Contractor.
 - .2 Fire Protection Contractor.
 - .3 Controls Contractor (CC).
 - .4 Electrical Contractor.
 - .5 Fire Alarm Contractor.
 - .6 Security Systems Contractor.
 - .7 Communications Systems Contractor.
 - .4 Commissioning Authority (CxA).
 - .5 Manufacturer's Technicians.

- .6 Testing Agencies.
- .7 Design Consultant (DC).
- .2 Roles of the commissioning team shall be as follows:
 - .1 CxA (Commissioning Authority):
 - .1 CxA role shall be included in the GC contract scope of work.
 - .2 Reviews Owner's Representative's Project Requirements, and design documents at all stages of submittal and provides comments to the PC.
 - .3 Identifies Cx team members.
 - .4 Records all comments as history for the project commissioning.
 - .5 Produces the Commissioning Manual for review by the PC and DC and modifies based on their comments as necessary.
 - .6 Provides "Issued for Construction" Commissioning Manual to the PC.
 - .7 Provides guidance on the Commissioning Process, and responsibilities of Commissioning Team members.
 - .8 Reviews contractor shop drawings for related commissioning information.
 - .9 Coordinates and chairs (in person or via teleconference) the commissioning kick-off meeting and progress meetings.
 - .10 Prepares and distributes the meeting agenda and minutes.
 - .11 Attends (when necessary) Installation Verification.
 - .12 Reviews completed Installation Verification checklists and signs off.
 - .13 Attends Performance Verification and signs off on check lists.
 - .14 Attends Owner's Representative training sessions.
 - .15 Verifies that training is complete.
 - .16 Reviews completed Cx manual.
 - .17 Prepares Summary Commissioning Report and submits to the PC.
 - .18 Prepares letter for PC indicating acceptance of the completed commissioning activities.
 - .19 Verifies that seasonal or deferred Commissioning is completed.
 - .20 Coordinates ten (10) month building review and issues occupant survey.

.2 GC (General Contractor):

- .1 Maintains as-built drawings on site during construction.
- .2 Submits shop drawing in accordance with the specifications.
- .3 Ensures the Cx Manual is on site and being completed and kept up to date by all sub-trades.
- .4 Executes the Cx process ensuring that sub-trades perform their responsibilities and integrate Cx into the construction process.
- .5 Ensures equipment manufacturers and vendors provide documentation to facilitate the Commissioning work and perform startups.
- .6 Coordinates and schedules Cx activities with the CxA, submits schedule for review and comment by PC.
- .7 Conducts Installation Verification and signs off checklists.
- .8 Provides written confirmation all systems are operational prior to start of Performance Verification.
- .9 Conducts Performance Verification with all required Commissioning Team members present.
- .10 Ensures that all required personnel are available for the verification.
- .11 Maintains an up-to-date version of the Cx manual on site with checklists completed on installed/operational systems.
- .12 Provides all required training.
- .13 Coordinates location, schedule.
- .14 Provides facilities (location, materials).
- .15 Ensures qualified factory-trained technicians are available to facilitate training.
- .16 Provides copies of all training material.
- .17 Obtains occupancy approvals/permits.
- .18 Submits completed manual to CxA.
- .19 Provides the following information for inclusion in the Commissioning Summary Report.
 - .1 Training Records.
 - .2 Operation and Maintenance Manuals.
 - .3 Warranties.
 - .4 Completed commissioning Checklists.
 - .5 List of spare parts turned over.
- .20 Supplies maintenance materials and tools as per specification.
- .21 Attends all commissioning meetings.

- .3 PC (Project Coordinator):
 - .1 Main Owner's Representative contact for CxA during construction phase.
 - .2 Forwards the CxA provided Cx Manual for review by the DC, receives comments and issues them to the CxA.
 - .3 Coordinates Cx schedule with CxA for Installation Verification and Performance Verification and ensures all TI representatives are available to witness testing as required for Installation Verification and Performance Verification.
 - .4 Coordinates training schedules with CxA for Owner's Representative staff.
 - .5 Attends Installation Verification and Performance Verification demonstrations.
 - .6 Ensures Cx manual is on site and kept up to date by the GC.
 - .7 Verifies maintenance materials are provided by the GC as per the contract documents.
 - .8 Ensures GC is maintaining as-built drawings on site during construction.
 - .9 Attends training sessions as necessary and directed by the PC.
 - .10 Attends all commissioning meetings.
 - .11 Coordinates ten (10) month building review and issues occupant survey
- .4 TSI (Technical Services Inspector):
 - .1 Attends Installation Verification and Performance Verification for equipment within their discipline.
 - .2 Signs off on commissioning checklists within their discipline.
 - .3 Attends training sessions as necessary and directed by the PC.
 - .4 Attends all commissioning meetings.
- .5 Sub Trades:
 - .1 Demonstrates correct system performance.
 - .2 Perform commissioning duties as directed by the GC and CxA.
- .6 DC (Design Consultant):
 - .1 Reviews the Owner's Representative Project Requirements and provides comment to the PC.
 - .2 Reviews drafts of the Cx Manual, including the installation and Performance Verification checklists, and provides comments to the PC.

- .3 Incorporates commissioning specification into the project documents.
- .4 Reviews contractor shop drawing submittals.
- .5 Attends periodic site visits to ensure systems meet the design intent and operate as outlined in the specifications.
- .6 Attends and signs off checklist for Installation Verification.
- .7 Attends Performance Verification and signs off on checklists for the appropriate discipline.
- .8 Attends training as required.
- .9 Attends commissioning meetings.
- .10 Attends ten (10) month building review activities.

.7 Owner's Representative:

- .1 Produces the Owner's Representative Project Requirements and submits to the PC.
- .2 Reviews all design documents and provides comments to the PC.
- .3 Coordinates maintenance staff participation in Cx activities.
- .4 Reviews O&M documentation and attends training.
- .5 Attends all training sessions.
- .6 Receives and retains a copy of the Commissioning Summary Report.
- .7 Provides maintenance representatives to facilitate the ten (10) month building review as necessary.
- .8 Attends commissioning meetings as necessary.

1.6 NON-CONFORMANCE TO PERFORMANCE VERIFICATION REQUIREMENTS

- .1 During Cx, should equipment, system components, and associated controls be identified as incorrectly installed, malfunctioning or not performing as per specifications, the contractor shall correct deficiencies, re-verify equipment and components within the system, including related systems as deemed necessary by the Owner's Representative, to ensure effective and accurate operation.
- .2 Minor deficiencies may be corrected at the time of identification. For systems requiring major repairs, the Commissioning Team shall move on to the next system to be commissioned. The Contractor shall notify the PC when the work is complete.
- .3 Costs for corrective work, additional tests, inspections, to determine acceptability and proper performance of such items to be borne by Contractor.

1.7 CONFLICTS

- .1 Report conflicts between requirements of this section, other sections, and the Cx Manual to the PC to obtain clarification prior to the start of work.
- .2 Failure to report conflict and obtain clarification will result in application of most stringent requirement.

1.8 SUBMITTALS

- .1 Prior to starting Cx the Contractor shall provide a set of equipment and system submittals. These submittals are supplemented by the installation and start-up procedures, O&M data, performance data, control drawings and any changes that may affect commissioned systems.
- .2 Submit no later than four (4) weeks after award of Contract:
 - .1 Name of Contractor's CxA (Commissioning Authority).
 - .2 Preliminary Cx schedule. Submit final Cx schedule to PC for review prior to performance verification.
 - .3 Submit the names of all personnel for approval by the PC. Designate who has managerial responsibilities for coordination of installation verification and performance verification.
 - .4 Submit documentation to confirm personnel compliance with quality assurance provisions.
- .3 Any changes to the information submitted must be re-submitted. Ensure certified trades persons, certified testing agencies and/or factory authorized personnel participate in commissioning tasks.
- .4 Prior to the start of Performance Verification:
 - .1 Submit TAB report to PC for review.
 - .2 Submit start-up documentation to PC for review.
 - .3 Submit completed Installation Verification checklists.
- .5 Fifteen (15) days prior to application for Substantial Completion:
 - .1 Submit three (3) copies of final commissioning manual and applicable forms to the PC for review.
 - .2 Submit reports of performance verifications postponed due to seasonal, climatic, occupancy, or other reasons beyond the Contractor's control, promptly after execution of those services.
- .6 Ensure each form bears the required signatures as indicated on the form.
- .7 Submit as-built drawings, schematics, O&M manuals, maintenance materials and warranties to PC for review.

.8 Where structurally attached equipment is included in the scope of work, engage a third party Professional Structural Engineer, licensed to practice in the Province of Newfoundland and Labrador, for submission of stamped and signed shop drawings indicating acceptable mounting procedures for all equipment which is suspended, mounted or otherwise attached, as per Section 01 33 00 – Submittal Procedures. The Structural Engineer to also verify correct installation of the equipment.

1.9 COMMISSIONING DOCUMENTATION

- .1 Refer to Section 01 91 13.16 - Commissioning (Cx) Forms for requirements and instructions for use.
- .2 Checklists will be provided by the Contractor during the construction stage.
- .3 Installing subcontractors are to date and initial the checklists as construction and verifications are completed.
- .4 The CxA is to submit completed checklists to the PC for review and acceptance.
- .5 Once all documents have been reviewed and accepted the general contractor shall submit final commissioning documents in electronic form (PDF) and original signed copies.

1.10 COMMISSIONING SCHEDULE

- .1 Submit preliminary Cx schedule in Gantt Chart format to PC no later than four (4) weeks after award of contract.
- .2 Submit final Cx schedule in Gantt Chart format to PC for review four (4) weeks prior to performance verification.
- .3 Provide adequate time for Cx activities prescribed in technical sections, commissioning sections and the Cx manual including all on site activities as well as documentation procedures. Time should be allowed for re-verification should any system be rejected upon completion of initial verification.
- .4 Provide adequate time for training.

1.11 COMMISSIONING MEETINGS

- .1 The GC will convene Cx meeting consisting of all members of the design and construction teams to address building systems to be commissioned. Items to be discussed will include commissioning requirements, completion and start-up schedules, and roles and responsibilities.

- .2 CxA to make necessary updates and changes to the Cx Manual and deliver to the PC.
- .3 Convene Cx meetings following project meetings and as specified herein to resolve issues, monitor progress and identify deficiencies relating to Cx.
- .4 Continue Cx meetings on regular basis until commissioning deliverables have been addressed.
- .5 At 60% construction completion stage CxA to call a separate Cx meeting to review progress, discuss schedule of equipment start-up activities and prepare for Cx. Issues at meeting to include:
 - .1 Review duties and responsibilities of Contractor and subcontractors, addressing delays and potential problems.
 - .2 Determine the degree of involvement of trades and manufacturer's representatives in the commissioning process.
- .6 Thereafter Cx meetings to be held until project completion and as required during equipment start-up and functional testing period.
- .7 Meetings will be chaired by the CxA, meeting minutes will be prepared and issued by the CxA. Clarifications to the minutes must be submitted within 5 days of issue, after which, the issued set becomes the official project record.
- .8 Ensure subcontractors and relevant manufacturer representatives are present at 60% and subsequent Cx meetings and as required.

1.12 STARTING AND TESTING

- .1 Contractor assumes liabilities and costs for inspections, including disassembly and re-assembly after approval, starting, testing and adjusting, and supply of testing equipment, and all associated costs of installation and performance verification.

1.13 WITNESSING OF STARTING AND TESTING

- .1 Provide twenty-eight (28) days' notice prior to commencement.
- .2 Owner's Representative to witness start-up and testing.
- .3 Contractor's CxA (Commissioning Authority) to be present at tests performed and documented by sub-trades, suppliers and equipment manufacturers.

1.14 MANUFACTURER'S INVOLVEMENT

- .1 The Contractor shall obtain manufacturers installation, start-up and operations instructions prior to start-up of components, equipment and systems.
 - .1 Compare completed installation with manufacturer's published data, record discrepancies, and review with manufacturer.
 - .2 Modify procedures detrimental to equipment performance and review same with manufacturer before start-up.
- .2 Integrity of warranties:
 - .1 Use manufacturers trained start-up personnel where specified elsewhere in other divisions or required to maintain integrity of warranty.
 - .2 Verify with manufacturer that testing as specified will not void warranties.
- .3 Qualifications of manufacturer personnel:
 - .1 Experienced in design, installation and operation of equipment and systems.
 - .2 Ability to interpret test results accurately.
 - .3 Ability to report results in a clear, concise, logical manner.

1.15 PROCEDURES

- .1 Verify that equipment and systems are complete, clean, and operating in normal and safe manner prior to conducting Performance Verification.
- .2 Conduct Commissioning in following distinct phases:
 - .1 Included in delivery and installation:
 - .1 Verification of conformity to specification, approved shop drawings and completion of product information report forms.
 - .2 Visual inspection of quality of installation.
 - .2 Installation Verification: follow accepted start-up procedures.
 - .3 Performance Verification: document equipment performance. Include repetition of tests after correcting deficiencies.
 - .4 Post-substantial performance verification: to include fine-tuning.
- .3 Correct deficiencies and obtain approval from PC after distinct phases have been completed and before commencing next phase.
- .4 Document required tests on checklists provided in the contractor supplied Cx Manual as well on any supplied Manufacturer forms.

- .5 Failure to follow accepted Commissioning Processes will result in re-evaluation of equipment by an independent testing agency selected by PC. If results reveal that equipment Commissioning Process was not in accordance with requirements, and resulted in damage to equipment, implement following:
 - .1 Minor equipment/systems: if evaluation report concludes that damage is minor, implement corrective measures approved by PC.
 - .2 Major equipment/systems: If evaluation report concludes that major damage has occurred, PC shall reject equipment to be removed from site and replaced with new.
 - .3 Subject new equipment/systems to specified Commissioning Process

1.16 COMMISSIONING DOCUMENTATION

- .1 Assemble Installation Verification documentation and submit to PC for approval before commencement of Performance Verification.
- .2 Installation Verification documentation to include:
 - .1 Factory and on-site test certificates for specified equipment.
 - .2 Inspection reports.
 - .3 Signed Installation Verification check lists.
 - .4 Start-up reports.
 - .5 Step-by-step description of complete start-up procedures, to permit the CxA to repeat start-up at any time.

1.17 OPERATION AND MAINTENANCE OF EQUIPMENT AND SYSTEMS

- .1 After Performance Verification, operate and maintain equipment and systems as directed by equipment/system manufacturer.
- .2 With assistance of manufacturer develop written maintenance program and submit to PC for approval before implementation.
- .3 Operate and maintain systems for minimum twenty one (21) days for commissioning to be completed.
- .4 After completion of commissioning, operate and maintain systems until issuance of Substantial Completion

1.18 TEST RESULTS

- .1 If start-up, testing and/or performance verification produce unacceptable results, repair, replace or repeat specified starting and/or performance verification procedures until acceptable results are achieved.

.2 Provide personnel, resources and materials, assume all costs for re-verification.

1.19 INSTRUMENTS / EQUIPMENT

.1 Submit to PC for review and approval:

.1 Complete list of instruments proposed to be used.

.2 Listed data including, serial number, current calibration certificate, calibration date, calibration expiry date and calibration accuracy.

.2 Provide all required equipment to complete commissioning.

.3 Provide all Arc Flash Personal Protective Equipment as required. Provide commissioning personnel with the appropriate Arc Flash Protection training.

1.20 PERFORMANCE VERIFICATION

.1 Notify PC at least twenty eight (28) days prior to start of Performance Verifications.

.2 Start Performance Verification after elements of building affecting start-up and performance verification of systems have been completed.

.3 Ensure all HVAC systems have been thoroughly cleaned.

.4 Conduct performance verification once identified pre-requisite activities are completed for a system and approved by the CxA.

.5 Test all building systems including architectural, structural, civil, mechanical and electrical components and operating procedures by challenging these systems to realistic operating conditions and train operational staff.

.6 Run systems through all sequences of operation and verify response of components.

.7 Notwithstanding all-inclusive requirements specified in this section, additional separate commissioning may be required at a later date for equipment and systems whose full operation is dependent on seasonal conditions. Job conditions for Peak Performance Verification are as follows:

.1 Summer sequence commissioning to take place between June 1st and September 15th when outside ambient temperatures are at least 22°C;

- .2 Winter sequence commissioning to take place between November 1st and March 31st when outside ambient temperature is no greater than minus 10°C.
- .8 Carry out Cx:
 - .1 Under actual operating conditions, over entire operating range, in all modes.
 - .2 On independent systems and interacting systems.
- .9 Cx procedures to be repeatable and reported results are to be verifiable.
- .10 Follow equipment manufacturer's operating instructions.
- .11 EMCS trending to be available as supporting documentation for performance verification.
- .12 CxA to obtain all documentation, including updated points list, controls sequences and setpoints. At completion of commissioning, scan completed manuals to electronic PDF format as required and submit to PC.

1.21 WITNESSING COMMISSIONING

- .1 CxA along with designated representatives to witness activities and verify results.

1.22 AUTHORITIES HAVING JURISDICTION

- .1 Where specified start-up, testing or commissioning procedures duplicate verification requirements of authority having jurisdiction, arrange for authority to witness procedures so as to avoid duplication of tests and to facilitate expedient acceptance of facility.
- .2 If the CxA is not available to witness, the certificates of approval from the Authority Having Jurisdiction will be accepted as adequate.
- .3 Obtain certificates of approval, acceptance and compliance with rules and regulation of authority having jurisdiction.

1.23 REPEAT VERIFICATIONS

- .1 Assume costs incurred by Owner's Representative's Commissioning representatives for second and subsequent verifications where:
 - .1 Verification of reported results fails to receive PC's approval.
 - .2 Repetition of second verification again fails to receive approval.

.3 PC deems Contractor's request for second verification was premature.

1.24 DEFICIENCIES, FAULTS, DEFECTS

.1 Report problems, faults or defects affecting Cx to the Owner's Representative in writing. Stop Cx until problems are rectified. Proceed with written approval from PC.

.2 Correct deficiencies found during start-up and Cx to satisfaction of PC.

1.25 COMPLETION OF COMMISSIONING

.1 Upon completion of Cx leave systems in normal operating mode.

.2 Except for warranty and seasonal verification activities, complete Cx prior to application for Substantial Completion.

.3 Cx to be considered complete when all Cx deliverables have been submitted and accepted by PC.

.4 The CxA is to compile a Final Commissioning Report summarizing all tasks, findings and documentation of the commissioning process. The Final Commissioning Report is to incorporate all test reports by sub-contractors, manufacturer's and controlling authorities including the following list. The Contractor shall turn over all materials per this specification.

.1 Evaluation of operating condition of the systems at the time of functional test completion.

.2 Deficiencies that were discovered and measures taken to correct them.

.3 Functional test procedures and results.

.4 Documentation of all commissioning field activities as they progressed.

.5 Description and estimated schedule of required deferred testing.

.5 The Contractor to provide O&M manuals, maintenance materials, warranties and training records.

1.26 ACTIVITIES UPON COMPLETION OF COMMISSIONING

.1 When changes are made to baseline components or system settings established during Cx process notify the CxA. The CxA will update and provide Cx forms for affected item.

1.27 TRAINING

.1 In accordance with Section 01 79 00.13 – Demonstration and Training for Building Commissioning, the Cx Manual and respective technical sections.

1.28 MAINTENANCE MATERIALS, SPARE PARTS, SPECIAL TOOLS

.1 Supply, deliver, and document maintenance materials, spare parts, and special tools as specified in contract. Provide transmittal documenting all materials provided.

1.29 OCCUPANCY

.1 Cooperate fully with PC during stages of acceptance and occupancy of facility.

1.30 PERFORMANCE VERIFICATION TOLERANCES

.1 Application tolerances:

.1 Specified range of acceptable deviations of measured values from specified values or specified design criteria, except for special areas, to be within +/- 5 % of specified values.

.2 Instrument accuracy tolerances:

.1 To be of higher order of magnitude than equipment or system being tested.

.3 Measurement tolerances during verification:

.1 Unless otherwise identified, recorded values to be within +/- 2 % of specified values.

1.31 OWNER'S REPRESENTATIVE'S PERFORMANCE TESTING

.1 Performance testing of equipment or system by CxA will not relieve Contractor from compliance with specified start-up and testing procedures.

PART 2 PRODUCTS (NOT APPLICABLE)

PART 3 EXECUTION

3.1 SCHEDULE

.1 Provide a detailed schedule as per this section for on-site verification activities by the commissioning team based on the Cx Manual provided by

the contractor. Be responsible for resource allocation respecting the exact number and duration for personnel required to perform the tasks required.

- .2 This schedule shall be submitted with the general construction schedule monthly. The level of detail shall increase as the construction progresses.

3.2 COMMISSIONING TASKS

- .1 Refer to the Cx Manual provided by the contractor for a list of tasks to be conducted for the commissioning process. Further specifics are provided within applicable specification sections.

END OF SECTION

PART 1 **GENERAL**

1.1 RELATED SECTIONS

- .1 Section 01 33 00 – Submittal Procedures.
- .2 Section 01 43 39 – Mock Up Requirements.
- .3 Section 01 45 00 – Quality Control.
- .4 Section 07 84 00 – Firestopping.

1.2 REFERENCES

- .1 American Society for Testing and Materials (ASTM)
 - .1 ASTM E-84, Surface Burning Characteristics of Building Materials.
 - .2 ASTM E-136, (Noncombustibility) Behaviour of Materials in Vertical Tube Furnace at 750 ° C.
 - .3 ASTM E-605, Thickness and Density of Sprayed Fire-Resistive Materials Applied to Structural Members.
 - .4 ASTM E-736, Cohesion/Adhesion of Sprayed Fire-Resistive Materials Applied to Structural Members.
 - .5 ASTM E-759, Effect of Deflection of Sprayed Fire-Resistive Materials Applied to Structural Members.
 - .6 ASTM E-760, Standard for Effect of Impact on Bonding of Sprayed Fire Resistive Materials Applied to Structural Members.
 - .7 ASTM E-761, Compressive Strength of Sprayed Fire-Resistive Materials Applied to Structural Members.
 - .8 ASTM E-859, Standard of Air Erosion of Sprayed Fire Resistive Materials Applied to Structural Members.
 - .9 ASTM E-937, Corrosion of Steel by Sprayed Fire-Resistive Materials Applied to Structural Members.
 - .10 ASTM G-21, Standard for Determining Resistance of Synthetic Polymeric Materials to Fungi.
- .2 National Fireproofing Contractors Association (NFCA)
 - .1 NFCA – 100, Standard Practice for the Application of Spray-Applied Fire Resistive Materials.
 - .2 NFCA – 200, Field Quality Assurance Procedures for Application of Spray-Applied Fire Resistive Materials.
- .3 Underwriters Laboratories of Canada (ULC)

- .1 CAN/ULC-S101, Standard Method of Fire Endurance Tests of Building Construction and Materials.
- .2 CAN/ULC-S102, Standard Method of Test for Surface Burning Characteristics of Building Materials and Assemblies.

1.3 SCOPE OF WORK

- .1 The work under this section includes, but not necessarily limited to, fireproofing of the structural steel and deck in the locations indicated.
- .2 Examine all of the contract documents for requirements which affect work of this section. Other sections which directly relate to the work of this section include, but are not limited to, the following:
 - .1 Section 05 12 23 - Structural Steel for Buildings.
 - .2 Section 05 21 00 – Steel Joist Framing.
 - .3 Section 05 31 00 – Steel Decking.
 - .4 Section 07 84 00 – Fire Stopping.
 - .5 Mechanical – Re: Patching.
 - .6 Electrical – Re: Patching.

1.4 SUBMITTALS

- .1 Test Reports:
 - .1 Submit product data including certified copies of test reports verifying fireproofing applied to substrate as constructed on project will meet or exceed requirements of Specification.
 - .2 Submit test results in accordance with CAN/ULC-S101 for fire endurance and CAN/ULC-S102 for surface burning characteristics.
 - .3 For assemblies not tested and rated, submit proposals based on related designs using accepted fireproofing design criteria.
- .2 Shop Drawings: Submit framing plans, schedules indicating the following:
 - .1 Extent of fireproofing for each construction and fire-resistance rating.
 - .2 Applicable fire-resistance design designations of a qualified testing and inspection agency acceptable to authorities having jurisdiction.
 - .3 Minimum fireproofing thickness needed to achieve required fire-resistance rating of each structural component and assembly.
- .3 Submit 300 x 300 mm size sample of exposed fireproofing for approval of texture and coating.

MOCK-UPS

- .4 Erect mock-up in accordance with Section 01 43 39 – Mock Up Requirements.
- .5 Apply fireproofing to approximately 10 m² area of surfaces of mock-up-matching surface to be treated.

1.5 PROTECTION

- .1 Do not apply fireproofing when ambient or substrate temperatures are 7° C or lower, unless temporary protection and heat are provided to maintain temperature at or above this level 24 hours before, during, and 24 hours after product application.
- .2 Ventilate building spaces during and after application of fireproofing, providing complete air changes according to manufacturer's written instructions. Use natural ventilation, and if natural ventilation is insufficient, employ mechanical means as necessary.
- .3 Protect adjacent surfaces and equipment from damage by overspray, fall-out, and dusting of fireproofing materials.
- .4 Surfaces to be sprayed must be free of any substance that would impair proper adhesion.
- .5 The contractor shall make available to the fireproofing contractor suitable area(s) for permanent locations for mixing and pumping fireproofing. This area must:
 - .1 Be convenient to the structure.
 - .2 Be able to accommodate delivery of the product.
 - .3 Allow for space for truck storage and trailer parking, and for materials and equipment.
 - .4 Be well drained.
 - .5 Be near a suitable source of potable water.
 - .6 Have a proper source of electrical power, if required.
 - .7 Provide temporary heat and ventilation to comply with manufacturer's recommendations.

1.6 QUALITY ASSURANCE

- .1 Installer Qualifications: Contractor shall be certified, licensed or otherwise qualified by fireproofing manufacturer, and be experienced installing specified products, with minimum five (5) years documented experienced.

.2 Manufacturer's representative:

- .1 Inspect fireproofing system at the start of construction, midway and as required for commissioning. Additional inspections may be carried out at the discretion of the Fireproofing System Manufacturer.
- .2 Provide technical assistance where required in correct installation of roofing system.

.3 Obtain spray applied fireproofing products from a single source for each product required. Provide secondary materials, acceptable to the fireproofing manufacturer, which are included in the tested and/or listed designs.

.4 Provide fireproofing materials that have been listed and classified by one or more of the following testing materials:

- .1 Underwriters Laboratories (UL).
- .2 Underwriters Laboratories of Canada (ULC).
- .3 ITS (formerly Warnock Hersey), and
- .4 Other testing and inspecting agencies acceptable to the Owner and authorities having jurisdiction.
- .5 All products must be packaged with proper identifications and approval indications acceptable to the testing and/or listing agency.

.5 Manufacturer shall provide Certification that products supplied are 100% asbestos free.

.6 Steel Surfaces:

- .1 Structural steel and steel decking shall be unprimed.
- .2 Steel surfaces that are painted and/or primed shall meet UL requirements for application and adhesion characteristics. Provide certifications from fireproofing manufacturer of compatibility of fireproofing and painted systems. Restrictions published by UL shall apply.
- .3 Steel surfaces with incompatible primers or paint shall be remedied by removal of primer or paint, be lathed, otherwise remedied within the requirements of UL, so that adequate and approved bonding can occur, acceptable to authorities having jurisdiction.

.7 NFCA 200 – Field Quality Assurance Procedures for Application of Spray-Applied Fire Resistive Materials, shall be followed to help ensure that material application meets design requirements for substrate conditions, water control, wet density and thickness.

.8 Special inspections may be conducted by an Owner engaged ICC Certified Special Inspector for SFRM to perform code mandated inspections following SFRM application.

1.7 SEQUENCING

.1 Sequence and coordinate application of fireproofing with other related work specified in other sections to comply with the following requirements:

- .1 Provide temporary enclosures for interior applications to prevent deterioration of applied materials exposed to unfavorable environmental conditions.
- .2 Avoid exposure of fireproofing to unnecessary damage abrasion.
- .3 Do not apply fireproofing to metal roof deck until roofing is complete including installation of all air handling systems. Prohibit all roof traffic until application of fireproofing is completed and dry.
- .4 Do not apply fireproofing until all hangers, clips and other necessary supports are in place, requiring penetration of fireproofing.
- .5 Ducts, piping and other items that would interfere with the application of fireproofing shall not be installed, until application is complete.

1.8 WARRANTY

.1 Provide a written guarantee, executed by the Contractor and cosigned by the installer, and issued in the name of the Owner, agreeing to repair or replace sprayed fireproofing materials that fall within one (1) year from the date of Substantial Certificate of Completion.

- .1 Failures include, but are not limited to, cracking, flaking, eroding in excess of specified requirements, peeling and delamination of sprayed fireproofing from substrates due to defective materials or installation.

1.9 DELIVERY, STORAGE AND HANDLING

- .1 Deliver materials in manufacturer's unopened packages, identified as to trade name, type and other identifying data. Packaging shall bear the ULI or ITS labels and seals for fire resistance ratings.
- .2 Store materials at a temperature above 4° C in a dry location, protected from the weather.
- .3 Damaged packages found unsuitable for use and any materials which have come into contact with contaminants prior to use shall be rejected and removed from site.

PART 2 **MATERIALS**

2.1 GENERAL

- .1 Supply and install fireproofing and acoustical treatment to the steel in the locations and to the extent as shown on the Drawings.

2.2 PERFORMANCE CRITERIA

- .1 Adhesion: Provide materials that meet or exceed adhesion requirements in accordance with [ASTM E736/E736M](#)
- .2 Thickness and Weight: Determine application thickness and weight of applied fireproofing based on tests of assemblies in accordance with CAN/ULC-S101. Apply same thickness of fireproofing material to all structural components forming a part of the assembly including; but not limited to, cross bracing, support angles and hangers.
- .3 Only assemblies that have been tested in accordance with Limit States Design method are acceptable. Assemblies that require use of a Load Restricted factor in accordance with Working Stress Design methods are not acceptable.
- .4 Engineered Judgements: Provide engineered judgement acceptable to authority having jurisdiction (AHJ) where the protected assembly differs from the tested assembly used to determine thickness.
- .5 Spray-applied fireproofing must not crack, spall or delaminate under downward deflection conditions over a 3 m clear span.
- .6 Fungal Resistance: To [ASTM G21](#), 28 days no growth.
- .7 Air Erosion: To [ASTM E859/E859M](#), maximum 0.25 gram loss per square meter in 24 hours.
- .8 Provide materials containing no asbestos.
- .9 Spray-applied fireproofing must not contribute to corrosion of test panels.

2.3 FIREPROOFING MATERIAL

- .1 Fireproofing: medium density gypsum cement-based spray applied fire resistive materials comprised of cement binders and lightweight aggregates with the following characteristics:
 - .1 ULC certified and meeting the ULC Design for the Fire Rating indicated.

- .2 Fire Rating: 120MIN. as indicated.
- .3 Cohesion/Adhesion: minimum 19 kPa based on field testing, to ASTM E-736
- .4 Deflection: No cracks or delamination, to ASTM E-759.
- .5 Corrosion Resistance: does not promote corrosion of steel, to ASTM E-937.
- .6 Sound Absorption: 0.85 NRC at 13 mm thickness.
- .7 Density: minimum 350 kg/m³, to ASTM E-605.
- .8 Compressive Strength: minimum 800 kPa, to ASTM E-761.
- .9 Combustibility: noncombustible, to CAN/ULC-S114.
- .10 Surface Burning: flame spread – 0, smoke development – 0, to ATSM E-84.
- .11 Air Erosion: 0.00 g/m², to ASTM E-859.
- .12 Thickness: as indicated.

2.4 MISCELLANEOUS MATERIALS

- .1 Primers approved by fireproofing manufacturer and complying with one or both of the following requirements:
 - .1 Primer and substrate are identical to those tested in required fire-resistance design by UL or another testing and inspecting agency acceptable to authorities having jurisdiction.
 - .2 Primer's bond strength in required fire-resistance design complies with specified bond strength for fireproofing and with requirements in ULC's Fire Resistance Directory or in the listings of another qualified testing agency acceptable to authorities having jurisdiction, based on a series of bond tests according to ASTM E-736.
- .2 Bonding agent as approved by fireproofing manufacturer and complying with requirements in ULC's Fire Resistance Directory or in the listings of another qualified testing agency acceptable to authorities having jurisdiction.
- .3 Expanded metal lath fabricated from material of weight, configuration and finish required, according to fire-resistance designs indicated and fireproofing manufacturer's written recommendations. Include clips, lathing accessories, corner beads, and other anchorage devices required at attach lath to substrates and to receive fireproofing.
- .4 Glass or carbon-fibre reinforcing fabric to type, weight and form required to comply with fire-resistance designs indicated, approved and provided by fireproofing manufacturer.

- .5 Metallic reinforcing mesh of type, weight and form required to comply with fire-resistance designs indicated, approved and provided by fireproofing manufacturer. Include pins and attachment.
- .6 Curing Compound: type recommended by fireproofing manufacturer, qualified for use in ULC Designs specified.
- .7 Sealer: type recommended by fireproofing manufacturer, qualified for use in ULC Design specified.
- .8 Provide factory added mold inhibitor tested in accordance with ASTM G-21 for areas such as hospitals, testing laboratories, health facilities and other areas if hygienic requirements.
- .9 Use top coats as required and recommended by fireproofing manufacturer or compatible products.

2.5 FIRESTOPPING

- .1 Supply and install fire stopping for all openings and gaps in walls and floors designated as fire separations. Refer to Section 07 84 00 - Firestopping.

PART 3 EXECUTION

3.1 PREPARATION

- .1 Substrate shall be free of material, which would impair bond.
- .2 Verify that painted substrate are compatible and have suitable bonding characteristics to receive fireproofing.
- .3 Remove incompatible materials.
- .4 Ensure that items required to penetrate fireproofing are placed before installation of fireproofing.
- .5 Ensure that ducts, piping, equipment, or other items which would interfere with application of fireproofing are not positioned until fireproofing work is completed. Clean flaking and rust from structural steel by sand blasting as required.

3.2 APPLICATION

- .1 Use trowelled on application for repair and patching.

- .2 Apply bonding adhesive or primer to substrate if recommended by manufacturer.
- .3 Apply fireproofing over substrate, building up to required thickness to cover substrate with monolithic blanket of uniform density and texture.
- .4 Apply fireproofing directly to open web joists without use of expanded lath.
- .5 Tamp smooth, surfaces visible in finished work or as indicated.
- .6 Apply curing compound to surface of cementitious fireproofing as required by manufacturer.

3.3 CLEANING AND PROTECTING

- .1 Immediately after completing spraying operations in each containable area of the Project, remove material overspray and fallout from surfaces of other construction and clean exposed surfaces to remove evidence of soiling.
- .2 Protect fireproofing according to advice of manufacturer and installer, from damage resulting from construction operations or other causes, so fireproofing will be without damage or deterioration at time of Substantial Completion.

3.4 PATCHING AND REPAIRING

- .1 Patch damage to fireproofing caused by testing or by other trades before fireproofing is concealed, or if exposed, before final inspection.
- .2 Repair fireproofing by reapplying using same method as original installation or using manufacturer's recommended trowel-applied product.

3.5 FIRE SEPARATIONS

- .1 Coordinate fire separation labelling/stenciling as per Sections 09 91 23 – Interior Painting and 09 01 90.63 – Interior Re-Painting.

END OF SECTION

PART 1 **GENERAL**

1.1 RELATED SECTIONS

- .1 Section 01 33 00 - Submittal Procedures.
- .2 Section 01 74 21 – Construction/Demolition Waste Management and Disposal.
- .3 Section 07 21 20 – Low Expanding Foam Sealant.
- .4 Section 07 92 00 - Joint Sealants.
- .5 Section 08 71 00 - Door Hardware.
- .6 Section 08 80 00 – Glazing.
- .7 Section 09 91 23 - Interior Painting.
- .10 Division 26: Wiring for electronic hardware.

1.2 REFERENCES

- .1 American Society for Testing and Materials (ASTM)
 - .1 ASTM A653/A653M, Specification for Steel Sheet Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvanized) by the Hot Dip Process.
- .2 Canadian General Standards Board (CGSB)
 - .1 CAN/CGSB-1.181, Ready-Mixed Organic Zinc-Rich Coating.
 - .2 CGSB 41-GP-19Ma, Rigid Vinyl Extrusions for Windows and Doors.
- .3 Canadian Standards Association (CSA)
 - .1 G40.20/G40.21, General Requirements for Rolled or Welded Structural Quality Steel/Structural Quality Steel.
 - .2 CSA W59, Welded Steel Construction (Metal Arc Welding).
- .4 Canadian Steel Door Manufacturers' Association, (CSDMA).
 - .1 CSDMA, Specifications for Commercial Steel Doors and Frames.
 - .2 CSDMA, Recommended Selection and Usage Guide for Commercial Steel Doors.
- .5 National Fire Protection Association (NFPA)

- .1 NFPA 80, Standard for Fire Doors and Fire Windows.
- .2 NFPA 252, Standard Methods of Fire Tests of Door Assemblies.
- .6 Underwriters' Laboratories of Canada (ULC)
 - .1 CAN4-S104M, Fire Tests of Door Assemblies.
 - .2 CAN4-S105M, Fire Door Frames Meeting the Performance Required by CAN4-S104.
 - .3 CAN/ULC-S701, Thermal Insulation, Polystyrene, Boards and Pipe Covering.
 - .4 CAN/ULC-S702, Thermal Insulation, Mineral Fibre, for Buildings.
 - .5 CAN/ULC-S704, Thermal Insulation, Polyurethane and Polyisocyanurate Boards, Faced.

1.3 DESIGN REQUIREMENTS

- .1 Design door assembly to withstand minimum 1,000,000 swing cycles in accordance with ANSI A151.1, with no failure of any design features of the door.
- .2 Design exterior frame assembly to accommodate to expansion and contraction when subjected to minimum and maximum surface temperature of -35°C to 35°C.
- .3 Maximum deflection for exterior steel entrance screens under wind load of 1.2 kPa not to exceed 1/175th of span.
- .4 Steel fire rated doors and frames: labelled and listed by an organization accredited by Standards Council of Canada in conformance with CAN4-S104 and NFPA 252 for ratings specified or indicated.
- .5 Provide fire labelled frames for openings requiring fire protection ratings. Test products in conformance with CAN4-S104 and NFPA 252 and listed by nationally recognized agency having factory inspection services and construct as detailed in Follow-Up Service Procedures/Factory Inspection Manuals issued by listing agency to individual manufacturers.

1.4 SUBMITTALS

- .1 Indicate each type of door, material, steel core thicknesses, mortises, reinforcements, location of exposed fasteners, openings, glazed, louvred, arrangement of hardware and fire rating and finishes.
- .2 Indicate each type frame material, core thickness, reinforcements, glazing stops, location of anchors and exposed fastenings and reinforcing firerating and finishes.

- .3 Include schedule identifying each unit, with door marks and numbers relating to numbering on drawings and door schedule.
- .4 Submit one 300 x 300 mm top corner sample of each type door.
- .5 Submit one 300 x 300 mm corner sample of each type of frame.
 - .1 Show butt cutout, glazing stops.

1.5 DELIVERY STORAGE AND HANDLING

- .1 Deliver, store, handle and protect doors and frames in accordance with Section 01 61 00- Common Product Requirements.
- .2 Deliver, handle and store doors and frames at the job site in such a manner as to prevent damage.
- .3 Store doors and frames under cover with doors stored in a vertical position on blocking, clear of floor and with blocking between doors to permit air circulation.

1.6 QUALITY ASSURANCE

- .1 Conform to requirements to ANSI A117.1
- .2 Company specializing in manufacturing products specified with a minimum of five (5) years documented experience.

1.7 WARRANTY

- .1 Provide a written warranty for work of this section from manufacturer for failure due to defective materials and from contractor for failure due to defective installation workmanship, for one (1) year respectively from the date of Substantial Completion.

PART 2 PRODUCTS

2.1 MATERIALS

- .1 Hot dipped galvanized steel sheet: to ASTM A653/A653M, ZF75, minimum base steel thickness in accordance with CSDMA Table 1 - Thickness for Component Parts.
- .2 Reinforcement channel: to CSA G40.20/G40.21, Type 44W, coating designation to ASTM A653/A653M, ZF75.

2.2 DOOR CORE MATERIALS

- .1 Stiffened: face sheets welded insulated core.
 - .1 Expanded polystyrene: CAN/ULC-S701, density 16 to 32 kg/m³.
 - .2 Polyurethane: to CAN/ULC-S704 rigid, modified polyisocyanurate, closed cell board. Density 32 kg/m³.
- .2 Temperature rise rated (TRR): core composition to limit temperature rise on unexposed side of door to 250°C at 60 minutes. Core to be tested as part of a complete door assembly, in accordance with CAN4-S104, ASTM E152 or NFPA 252, covering Standard Method of Tests of Door Assemblies and listed by nationally recognized testing agency having factory inspection service.
- .3 Thermal Insulation material must:
 - .1 Not require being labelled as poisonous, corrosive, flammable or explosive under the Consumer Chemical and Container Regulations of the Hazardous Products Act.
 - .2 Be manufactured using a process that uses chemical compounds with the minimum zone depletion potential (ODP) available.

2.3 ADHESIVES

- .1 Polystyrene and polyurethane cores: heat resistant, epoxy resin based, low viscosity, contact cement.

2.4 PRIMER

- .1 Touch-up prime CAN/CGSB-1.181.

2.5 ACCESSORIES

- .1 Door silencers: single stud rubber/neoprene type.
- .2 Exterior top and bottom caps steel.
- .3 Fabricate glazing stops as formed channel, minimum 16 mm height, accurately fitted, butted at corners and fastened to frame sections with counter-sunk oval head sheet metal screws.
- .4 Door bottom seal: Section 08 71 00 – Door Hardware.
- .5 Metallic paste filler: to manufacturer's standard.
- .6 Fire labels: metal riveted.
- .7 Sealant: Section 07 92 00 – Joint Sealants.

- .8 Provide low expanding, single component polyurethane foam sealant installed at head and jamb perimeter of door frame for sealing to building air barrier, vapour retarder and door frame. Foam sealant width to be adequate to provide required air tightness and vapour diffusion control to building air barrier and vapour retarder foam interior. Refer to Section 07 21 20 – Low Expanding Foam Sealant.
- .9 Glazing: Section 08 80 00 – Glazing.
- .10 Make provisions for glazing as indicated and provide necessary glazing stops.
 - .1 Provide removable stainless steel glazing beads for dry glazing of snap-on type.
 - .2 Design exterior glazing stops to be tamperproof.
- .11 Finish Painting: to Section 09 91 13 – Exterior Painting and Section 09 91 23 – Interior Painting.

2.6 FRAMES FABRICATION GENERAL

- .1 Fabricate frames in accordance with CSDMA specifications.
- .2 Fabricate frames to profiles and maximum face sizes as indicated.
- .3 Exterior frames: 1.2 mm welded, thermally broken type construction.
- .4 Interior frames: 1.2 mm welded type construction.
- .5 Blank, reinforce, drill and tap frames for mortised, template hardware, and electronic hardware using templates provided by finish hardware supplier. Reinforce frames for surface mounted hardware.
- .6 Protect mortised cutouts with steel guard boxes.
- .7 Prepare frame for door silencers, 3 for single door, 2 at head for double door.
- .8 Manufacturer's nameplates on frames and screens are not permitted.
- .9 Conceal fastenings except where exposed fastenings are indicated.
- .10 Provide factory-applied touch up primer at areas where zinc coating has been removed during fabrication.
- .11 Insulate exterior frame components with polyurethane insulation.

2.7 FRAME ANCHORAGE

- .1 Shim and anchor new doors in accordance with CAN/CSA A440.4.
- .2 Provide appropriate anchorage to floor and wall construction.
- .3 Locate each wall anchor immediately above or below each hinge reinforcement on hinge jamb and directly opposite on strike jamb.
- .4 Provide 2 anchors for rebate opening heights up to 1520 mm and 1 additional anchor for each additional 760 mm of height or fraction thereof.
- .5 Locate anchors for frames in existing openings not more than 150 mm from top and bottom of each jambs and intermediate at 660 mm o.c. maximum.

2.8 FRAMES: WELDED TYPE

- .1 Welding in accordance with CSA W59.
- .2 Accurately mitre or mechanically joint frame product and securely weld on inside of profile.
- .3 Cope accurately and securely weld butt joints of mullions, transom bars, centre rails and sills.
- .4 Grind welded joints and corners to a flat plane, fill with metallic paste and sand to uniform smooth finish.
- .5 Securely attach floor anchors to inside of each jamb profile.
- .6 Weld in 2 temporary jamb spreaders per frame to maintain proper alignment during shipment.

2.9 DOOR FABRICATION GENERAL

- .1 Doors: swing type, flush, with provision for glass and/or louvre openings as indicated.
- .2 Exterior doors: insulated, hollow steel construction. Interior doors: honeycomb hollow steel construction.
- .3 Fabricate doors with longitudinal edges locked seam. Seams: grind welded joints to a flat plane, fill with metallic paste filler and sand to a uniform smooth finish.

- .4 Doors: manufacturers' proprietary construction, tested and/or engineered as part of a fully operable assembly, including door, frame, gasketing and hardware in accordance with ASTM E330.
- .5 Blank, reinforce, drill doors and tap for mortised, templated hardware and electronic hardware.
- .6 Factory prepare holes 12.7 mm diameter and larger except mounting and through-bolt holes, on site, at time of hardware installation.
- .7 Reinforce doors where required, for surface mounted hardware. Provide flush steel top caps to exterior doors. Provide inverted, recessed, spot welded channels to top and bottom of interior doors.
- .8 Provide factory-applied touch-up primer at areas where zinc coating has been removed during fabrication.
- .9 Provide fire labelled doors for those openings requiring fire protection ratings, as scheduled. Test such products in strict conformance with CAN4-S104 ASTM E152 NFPA 252 and list by nationally recognized agency having factory inspection service and construct as detailed in Follow-Up Service Procedures/Factory Inspection Manuals issued by listing agency to individual manufacturers.
- .10 Manufacturer's nameplates on doors are not permitted.

2.10 HOLLOW STEEL CONSTRUCTION

- .1 Form each face sheet for exterior doors from 1.2 mm sheet steel.
- .2 Form each face sheet for interior doors from 1.2 sheet steel.
- .3 Reinforce doors with vertical stiffeners, securely welded to each face sheet at 150 mm on centre maximum.
- .4 Fill voids between stiffeners of exterior doors with insulation as specified.
- .5 Fill voids between stiffeners of interior doors with honeycomb core.

2.11 THERMALLY BROKEN DOORS AND FRAMES

- .1 Fabricate thermally broken doors by using insulated core and separating exterior parts from interior parts with continuous interlocking thermal break.
- .2 Thermal break: rigid polyvinyl chloride extrusion conforming to CGSB 41-GP-19Ma.

- .3 Fabricate thermally broken frames separating exterior parts from interior parts with continuous interlocking thermal break.
- .4 Apply insulation.

PART 3 **EXECUTION**

3.1 INSTALLATION GENERAL

- .1 Install labelled steel fire rated doors and frames to NFPA 80 except where specified otherwise.
- .2 Install doors and frames to CSDMA Installation Guide.

3.2 FRAME INSTALLATION

- .1 Set frames plumb, square, level and at correct elevation.
- .2 Secure anchorages and connections to adjacent construction.
- .3 Brace frames rigidly in position while building-in. Install temporary horizontal wood spreader at third points of door opening to maintain frame width. Provide vertical support at centre of head for openings over 1200 mm wide. Remove temporary spreaders after frames are built-in.
- .4 Make allowances for deflection of structure to ensure structural loads are not transmitted to frames.
- .5 Caulk perimeter of frames between frame and adjacent material.
- .6 Maintain continuity of air barrier and vapour retarder.

3.3 DOOR INSTALLATION

- .1 Install doors and hardware in accordance with hardware templates and manufacturer's instructions and Section 08 71 00 - Door Hardware.
- .2 Provide even margins between doors and jambs and doors and finished floor as follows.
 - .1 Hinge side: 1.0 mm.
 - .2 Latch side and head: 1.5 mm.
 - .3 Finished floor: 13 mm.
- .3 Adjust operable parts for correct function.
- .4 Install louvres.

3.4 FINISH REPAIRS

- .1 Touch up with primer finishes damaged during installation.
- .2 Fill exposed frame anchors and surfaces with imperfections with metallic paste filler and sand to a uniform smooth finish.

3.5 GLAZING

- .1 Install glazing for doors and frames in accordance with Section 08 80 00 - Glazing.

3.6 COMMISSIONING

- .1 Contractor to instruct maintenance personnel in operation and maintenance of doors and hardware.
- .2 Confirm operation and function for all doors and hardware.
- .3 Commissioning will be witnessed by Owner and Certificate will be signed by Contractor and Owner.

END OF SECTION

PART 1 **GENERAL**

1.1 RELATED SECTIONS

- .1 Section 01 33 00 - Submittal Procedures.
- .2 Section 01 43 39 – Mock Up Requirements.
- .3 Section 01 45 00 - Quality Control.
- .4 Section 01 74 21 – Construction/Demolition Waste Management and Disposal.
- .5 Section 01 78 00 - Closeout Submittals.
- .6 Section 07 82 00 – Joint Sealants.
- .7 Section 08 11 14 – Metal Doors & Frames.

1.2 REFERENCES

- .1 American National Standards Institute (ANSI).
 - .1 ANSI/ASTM E330, Test Method for Structural Performance of Exterior Windows, Doors, Skylights and Curtain Walls by Uniform Static Air Pressure Difference.
- .2 American Society for Testing and Materials (ASTM)
 - .1 ASTM C542, Specification for Lock-Strip Gaskets.
 - .2 ASTM D2240, Test Method for Rubber Property – Durometer Hardness.
- .3 Canadian General Standards Board (CGSB).
 - .1 CAN/CGSB-12.1, Tempered or Laminated Safety Glass.
 - .2 CAN/CGSB-12.3, Clear Float Glass
 - .3 CAN/CGSB-12.5, Mirrors, Silvered.
 - .4 CAN/CGSB-12.8, Insulating Glass Units.
 - .5 CAN/CGSB-12.11, Wired Safety Glass.
- .4 Canadian Standards Association (CSA).
 - .1 CSA A440.2, Energy Performance Evaluation of Windows and Sliding Glass Doors.
 - .2 CSA Certification Program for Windows and Doors.

.5 Glass Association of North American (GANA)

- .1 GANA Glazing Manual.
- .2 GANA Laminated Glazing Reference Manual.

1.3 SYSTEM DESCRIPTION

.1 Performance Requirements:

- .1 Provide continuity of building enclosure vapour and air barrier using glass and glazing materials as follow:
 - .1 Utilize inner light of multiple light sealed units for continuity of air and vapour seal.
 - .2 Size glass to withstand wind loads, dead loads and positive and negative live loads as measured in accordance with ANSI/ASTM E330 and NBC latest edition.
 - .3 Limit glass deflection to 1/200 with full recovery of glazing materials.

1.4 SUBMITTALS

.1 Product Data:

- .1 Submit manufacturer's printed product literature, specifications and data sheet.

.2 Manufacturer's Instructions:

- .1 Submit manufacturer's installation instructions.

.3 Closeout Submittals:

- .1 Provide maintenance data including cleaning instructions for incorporation into manual specified in Section 01 78 00 - Closeout Submittals

1.5 QUALITY ASSURANCE

.1 Perform work in accordance with GANA Glazing Manual and Laminated Glazing Reference Manual for glazing installation methods. Provide shop inspection and testing for glass.

.2 Provide certificate of quality compliance from manufacturer.

1.6 MOCK-UPS

.1 Construct mock-ups in accordance with Section 01 43 39 – Mock Up Requirements.

- .2 Construct mock-up to including glass glazing, and perimeter air barrier and vapour retarder seal.
- .3 Construct mock-up where directed.

1.7 WARRANTY

- .1 Provide ten (10) year warranty for glazing units from the date of Substantial Completion.

1.8 ENVIRONMENTAL REQUIREMENTS

- .1 Install glazing when ambient temperature is 10°C minimum. Maintain ventilated environment for 24 hours after application.
- .2 Maintain minimum ambient temperature before, during and 24 hours after installation of glazing compounds.

PART 2 PRODUCTS

2.1 MATERIALS: FLAT GLASS

- .1 Float glass: to CAN/CGSB-12.3, Glazing quality, 5 mm minimum thickness.
- .2 Safety glass: to CAN/CGSB-12.5, transparent, 6 mm thick.
 - .1 Type 1, Laminated, Type 2 - tempered
 - .2 Class B - float
 - .3 Category 11
- .3 Silvered mirror glass: to CAN/CGSB-12.5, 4 mm thick.
 - .1 Type 1A - Float glass for normal use
- .4 Wired glass: to CAN/CGSB-12.11, 6 mm thick.
 - .1 Type 1- Polished both sides (transparent)
 - .2 Wire mesh style 3 – square.
- .5 Glass for cabinet and millwork: to CAN/CGSB-12.5, transparent, minimum 4.0 mm thick, unless otherwise indicated.
 - .1 Type 1 - Clear Laminated or Type 2 - Tempered.

2.2 MATERIALS: FIRE RATED GLAZING

- .1 Thickness: 8 mm minimum.

- .2 Fire rating: 120 minutes.
- .3 Impact safety rating: to ANSI Z97.1 and CPSC 16CFR 1201 Cat. I and II.

2.3 MATERIALS

- .1 Sealant: 07 92 00 – Joint Sealants.

2.4 ACCESSORIES

- .1 Setting blocks: Neoprene, 80-90 Shore A durometer hardness to ASTM D2240, minimum 100 mm x width of glazing rabbet space minus 1.5 mm x height.
- .2 Spacer shims: Neoprene, 50-60 Shore A durometer hardness to ASTM D2240, 75 mm long x one half height of glazing stop x thickness to suit application. Self adhesive on one face.
- .3 Glazing tape:
 - .1 Preformed butyl compound with integral resilient tube spacing device, 10-15 Shore A durometer hardness to ASTM D2240; coiled on release paper; black colour.
- .4 Glazing splines: resilient polyvinyl chloride, extruded shape to suit glazing channel retaining slot, colour as selected.
- .5 Glazing clips: manufacturer's standard type.
- .6 Lock-strip gaskets: to ASTM C542.

PART 3 EXECUTION

3.1 MANUFACTURER'S INSTRUCTIONS

- .1 Compliance: Comply with manufacturer's written data, including product technical bulletins, product catalogue installation instructions, product carton installation instructions, and data sheets.

3.2 EXAMINATION

- .1 Verify that openings for glazing are correctly sized and within tolerance.
- .2 Verify that surfaces of glazing channels or recesses are clean, free of obstructions, and ready to receive glazing.

3.3 PREPARATION

- .1 Clean contact surfaces with solvent and wipe dry.
- .2 Seal porous glazing channels or recesses with substrate compatible primer or sealer.
- .3 Prime surfaces scheduled to receive sealant.

3.4 INSTALLATION: EXTERIOR – WET/DRY METHOD (PREFORMED TAPE AND SEALANT)

- .1 Perform work in accordance with GANA Glazing Manual and GANA Laminated Glazing Reference Manual for glazing installation methods.
- .2 Cut glazing tape to length and set against permanent stops, 6 mm below sight line. Seal corners by butting tape and dabbing with sealant.
- .3 Apply heel bead of sealant along intersection of permanent stop with frame ensuring full perimeter seal between glass and frame to complete continuity of air and vapour seal.
- .4 Place setting blocks at 1/4 points, with edge block maximum 150 mm from corners.
- .5 Rest glazing on setting blocks and push against tape and heel of sealant with sufficient pressure to attain full contact at perimeter of light or glass unit.
- .6 Install removable stops with spacer strips inserted between glazing and applied stops 6 mm below sight line.
- .7 Fill gap between glazing and stop with sealant to depth equal to bite of frame on glazing, maximum 9 mm below sight line.
- .8 Apply cap head of sealant along void between stop and glazing, to uniform line, flush with sight line. Tool or wipe sealant surface smooth.

3.5 INSTALLATION: INTERIOR DRY METHOD (TAPE AND TAPE)

- .1 Perform work in accordance with GANA Glazing Manual and GANA Laminated Glazing Reference Manual for glazing installation methods.
- .2 Cut glazing tape to length and set against permanent stops, projecting 1.6 mm above sight line.

- .3 Place setting blocks at 1/4 with edge block maximum 150 mm from corners.
- .4 Rest glazing on setting blocks and push against tape with sufficient pressure to attain full contact at perimeter of light or glass unit.
- .5 Place glazing tape on free perimeter of glazing in same manner described in 3.4.3. Apply heel bead of sealant along intersection of permanent stop with frame ensuring full perimeter seal between glass and frame to complete continuity of air and vapour seal.
- .6 Install removable stop without displacement of tape. Exert pressure on tape for full continuous contact.
- .7 Knife trim protruding tape.

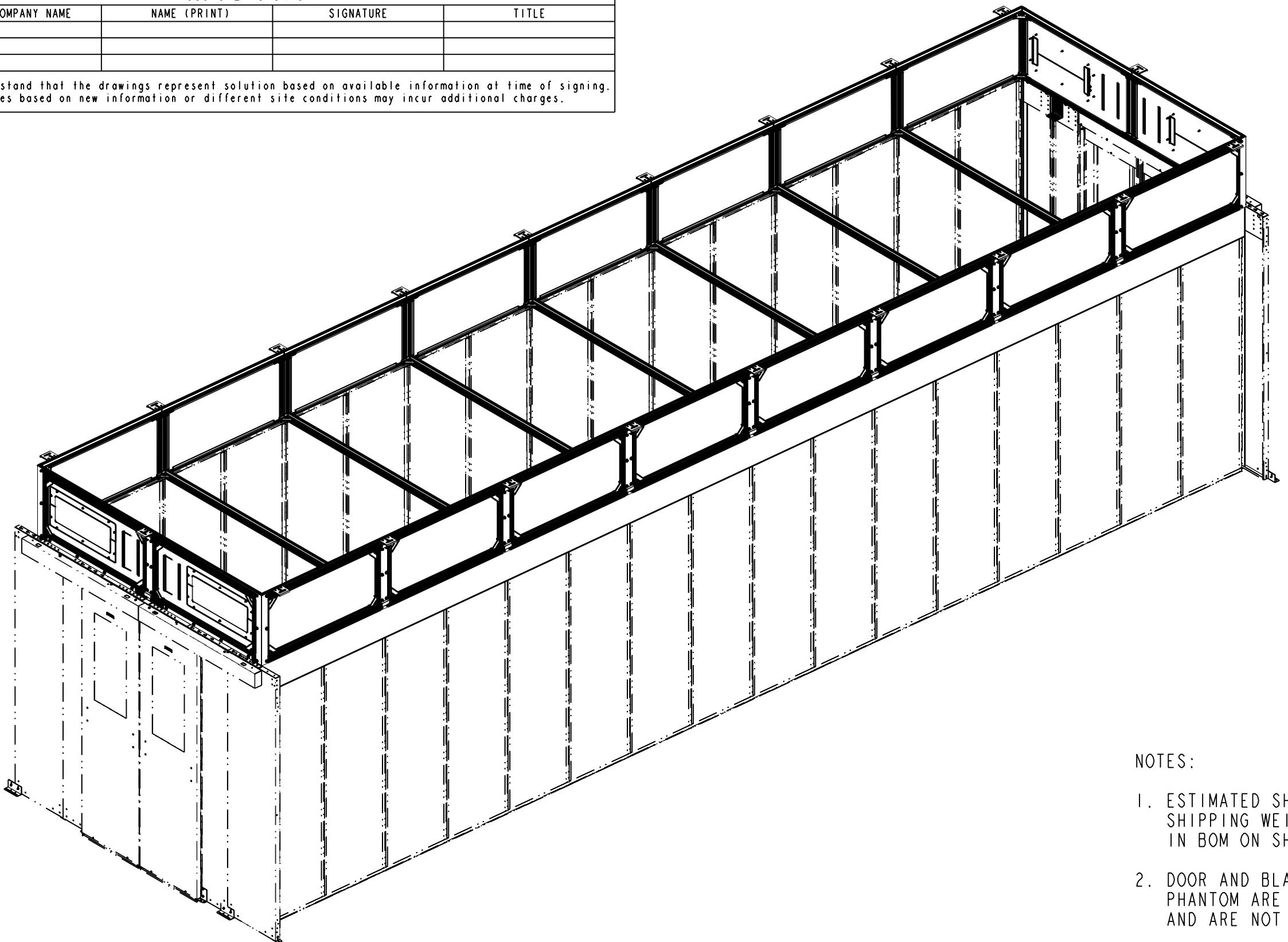
3.6 INSTALLATION: MIRRORS

- .1 Set mirrors with clips. Anchor rigidly to wall construction.
- .2 Set in frame.
- .3 Place plumb and level.

3.7 CLEANING

- .1 Perform cleaning after installation to remove construction and accumulated environmental dirt.
- .2 Remove traces of primer, caulking.
- .3 Remove glazing materials from finish surfaces.
- .4 Remove labels after work is complete.
- .5 Clean glass and mirrors using approved non-abrasive cleaner in accordance with manufacturer's instructions.
- .6 Upon completion of installation, remove surplus materials, rubbish, tools and equipment barriers.

3.8 PROTECTION OF FINISHED WORK


- .1 After installation, mark light with an "X" by using removable plastic tape or paste. Do not mark heat absorbing or reflective glass units.
- .2 Repair damage to adjacent materials caused by glazing installation.

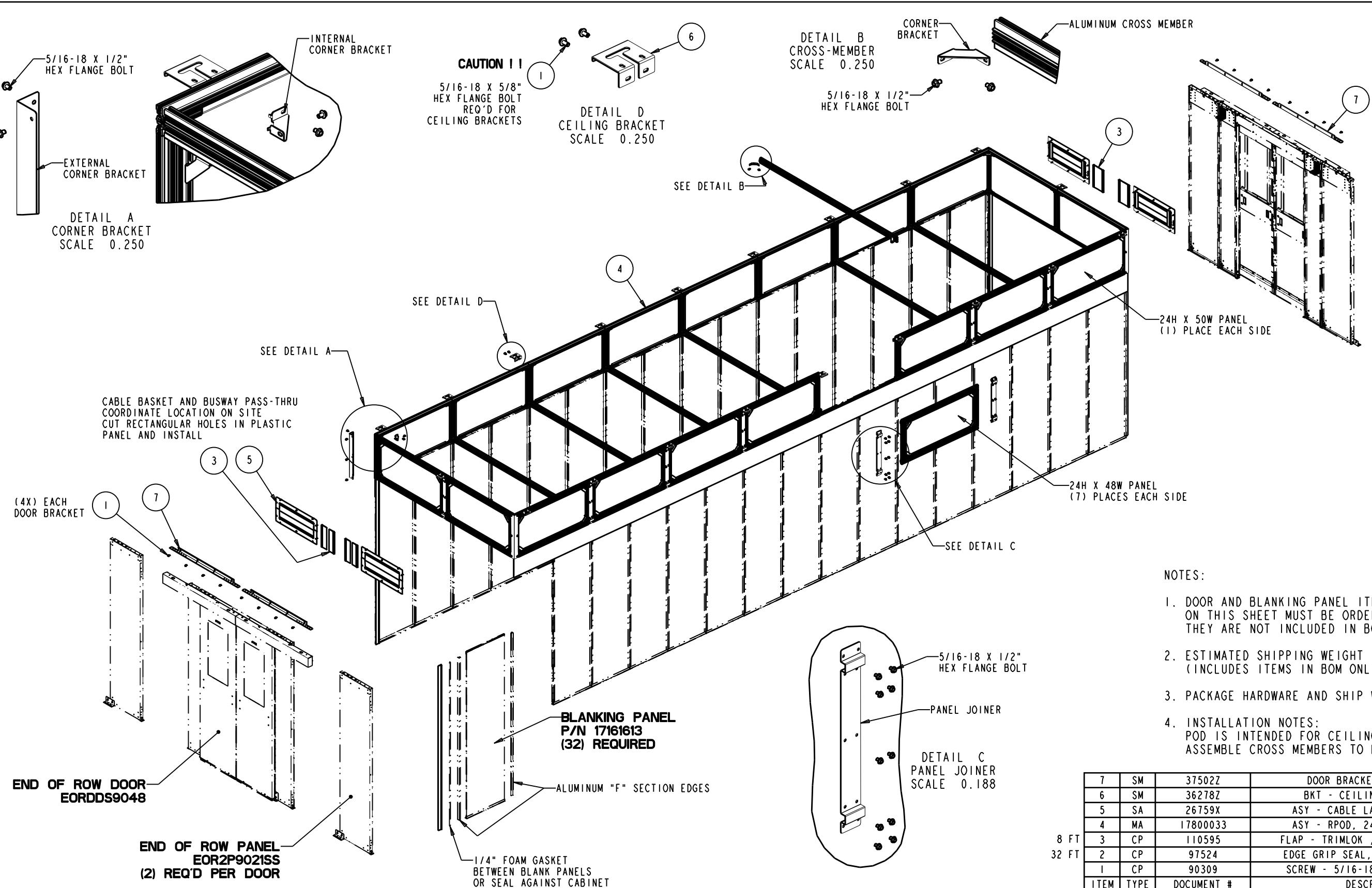
END OF SECTION

CUSTOMER SIGN OFF				
DATE	COMPANY NAME	NAME (PRINT)	SIGNATURE	TITLE

The signed understand that the drawings represent solution based on available information at time of signing. Subsequent changes based on new information or different site conditions may incur additional charges.

RELEASE STATUS
Production

NOTES:


1. ESTIMATED SHIPPING WEIGHT - 690 LBS
SHIPPING WEIGHT INCLUDES ITEMS
IN BOM ON SHEET 2 ONLY
2. DOOR AND BLANKING PANEL ITEMS SHOWN IN
PHANTOM ARE SOLD SEPARATELY
AND ARE NOT INCLUDED IN BOM FOR 17800036

Choose one:
PPAPA (CUSTOM LEVEL A)
PPAP3 (LEVEL 3)
PPAPC (CATALOG ITEM)
NA (MFD. PART OR EXEMPT)
PPAP LEVEL: NA

A - PRODUCTION RELEASE
REV REV. DATE REV'D BY CURRENT REVISION DESCRIPTION

EATON CORPORATION - CONFIDENTIAL AND PROPRIETARY
NOTICE: TO PERSONS RECEIVING THIS DOCUMENT AND/OR TECHNICAL INFORMATION
THIS DOCUMENT, INCLUDING THE DRAWING AND INFORMATION CONTAINED THEREON, IS CONFIDENTIAL AND IS THE
EXCLUSIVE PROPERTY OF EATON CORPORATION, AND IS MERELY ON LOAN AND SUBJECT TO RECALL BY EATON AT ANY
TIME. BY TAKING POSSESSION OF THIS DOCUMENT, THE RECIPIENT ACKNOWLEDGES AND AGREES THAT THIS
DOCUMENT CANNOT BE USED IN ANY MANNER ADVERSE TO THE INTERESTS OF EATON AND THAT NO PORTION OF THIS
DOCUMENT MAY BE COPIED OR OTHERWISE REPRODUCED WITHOUT THE PRIOR WRITTEN CONSENT OF EATON. IN THE
CASE OF CONFLICTING CONTRACTUAL PROVISIONS, THIS NOTICE SHALL GOVERN THE STATUS OF THIS DOCUMENT.
© Eaton Corporation. All Rights Reserved.

THIS DRAWING CONTAINS PROPRIETARY INFORMATION AND IS UNDER SUBJECT TO RETURN UPON DEMAND AND UPON THE EXPRESS CONDITION THAT IT WILL NOT BE USED IN ANY WAY DETERIMENTAL TO THE INTEREST OF EATON CORPORATION	CAGE NUMBER: 81824	ORIG EPR: EPR235639 CO-0268125	ASY - RAPIDPOD CTO, 24H 96W 386L, FAA -
DES. BY D.Nelson	06/12/23	DES. BY D.Nelson	
DRWN. BY D.Nelson	09/11/23	DRWN. BY D.Nelson	
DESIGN MGMT SITE: Worcester	PROD GRP 80 - RapidPod		
COLOR: -	COLOR: -		
DRAWN IN THIRD ANGLE PROJECTION <input type="checkbox"/> <input checked="" type="checkbox"/>	TOLERANCE UNLESS SPEC'D XX ± .02 XXX ± .005 ≤ ±	MATERIAL: CRS GA: N/A OTHER: SEE NOTES	
	ALL DIMENSIONS IN INCHES	MATERIAL FINISH: Powder Coat - Variable	
	SPEC #	SPEC #	
			D 17800036 REV A

CUT TO 90"
USE WITH END LOCATION PANELS ONLY
INTERFACE TO DOOR

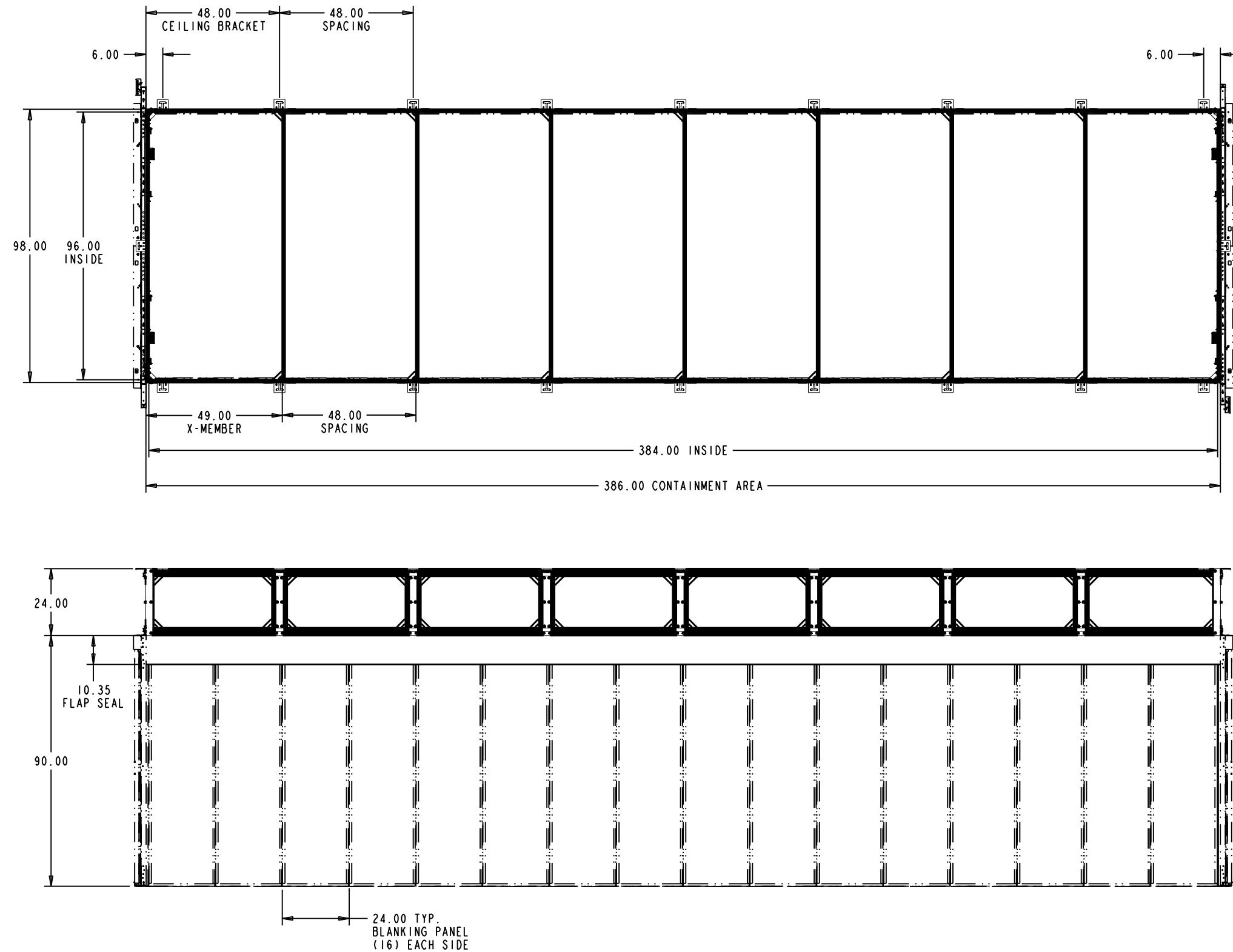
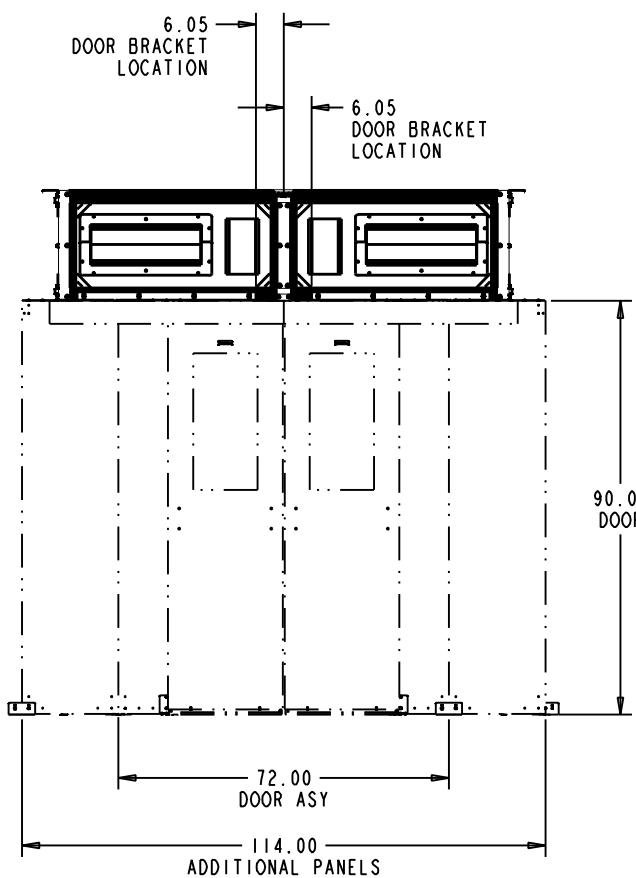
EATON CORPORATION - CONFIDENTIAL AND PROPRIETARY
NOTICE TO PERSONS RECEIVING THIS DOCUMENT AND/OR TECHNICAL INFORMATION
THIS DOCUMENT, INCLUDING THE DRAWING AND INFORMATION CONTAINED THEREON, IS CONFIDENTIAL AND IS THE
EXCLUSIVE PROPERTY OF EATON CORPORATION, AND IS MERELY ON LOAN AND SUBJECT TO RECALL BY EATON AT ANY
TIME. BY TAKING POSSESSION OF THIS DOCUMENT, THE RECIPIENT ACKNOWLEDGES AND AGREES THAT THIS
DOCUMENT CANNOT BE USED IN ANY MANNER ADVERSE TO THE INTERESTS OF EATON AND THAT NO PORTION OF THIS
DOCUMENT MAY BE COPIED OR OTHERWISE REPRODUCED WITHOUT THE PRIOR WRITTEN CONSENT OF EATON. IN THE
CASE OF CONFLICTING CONTRACTUAL PROVISIONS, THIS NOTICE SHALL GOVERN THE STATUS OF THIS DOCUMENT.
© Eaton Corporation, All Rights Reserved.

Choose one:
PPAPA (CUSTOM LEVEL A)
PPAP3 (LEVEL 3)
PPAPC (CATALOG ITEM)
NA (MFD. PART OR EXEMPT)

**END OF ROW PANEL
EOR2P9021SS
(2) REQ'D PER DOOR**

END OF ROW D00
EORDD5904

CUT TO 90"
USE WITH END LOCATION PANELS ONLY
INTERFACE TO DOOR



A	-	-	PRODUCTION RELEASE
REV	REV. DATE	REV'D BY	CURRENT REVISION DESCRIPTION

CO-0268125
ECN OR EPR NUMBER

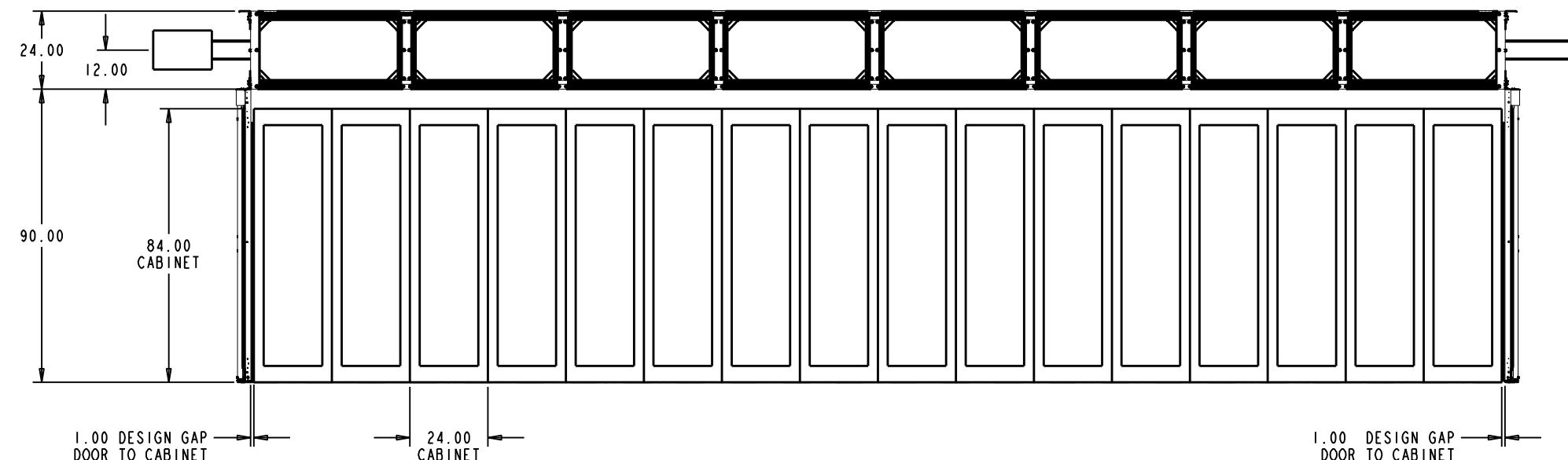
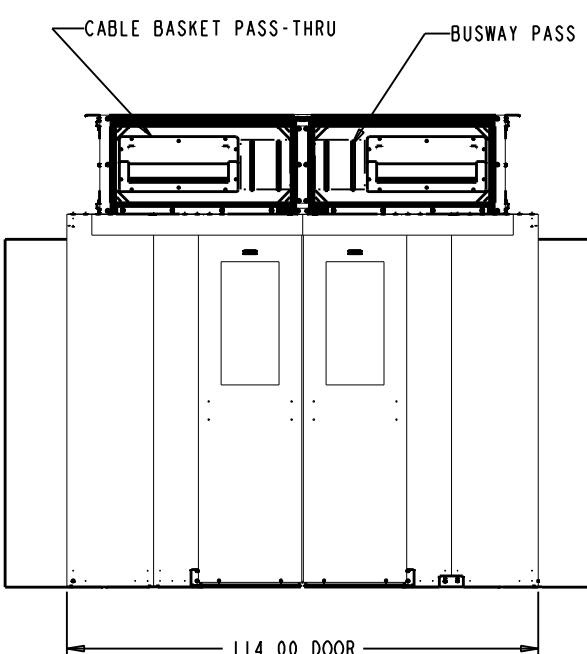
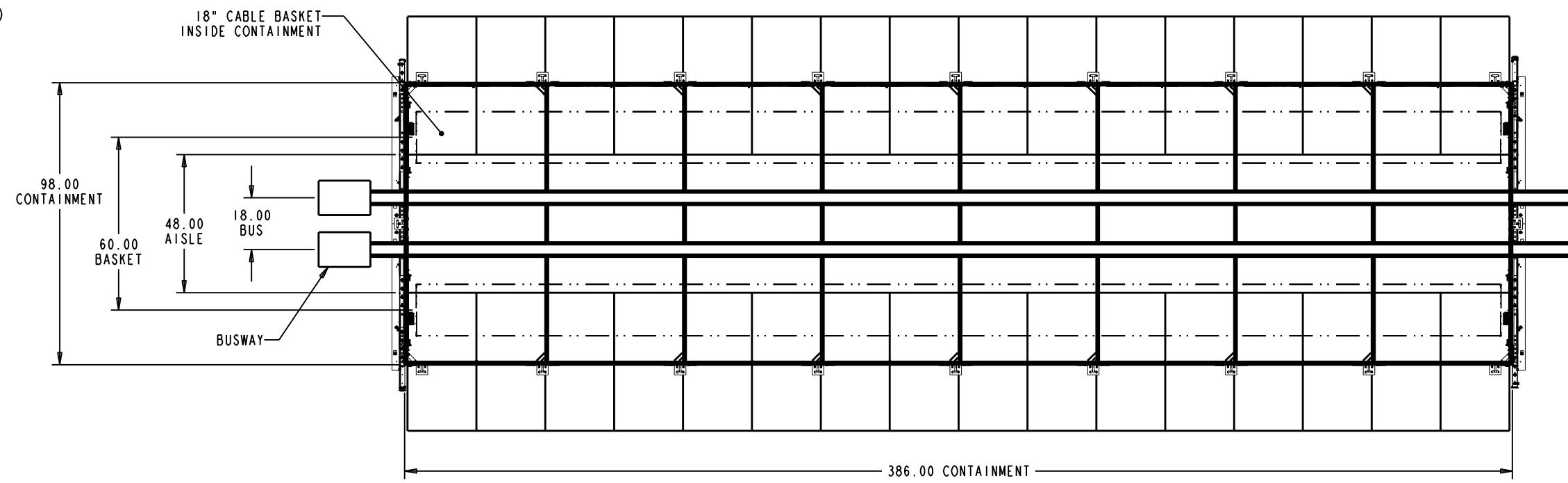
THIS DRAWING CONTAINS PROPRIETARY INFORMATION AND IS LOANED SUBJECT TO RETURN UPON DEMAND AND UPON THE EXPRESS CONDITION THAT IT WILL NOT BE USED IN ANY WAY DETERIMENTAL TO THE INTEREST OF EATON CORPORATION		CAGE NUMBER: 81824	ORIG EPR: EPR235639 CO-0268125 DES. BY DNelson 06/12/23 DRWN. BY DNelson 09/11/23	 ASY - RAPIDPOD CTO, 24H 96W 386L, FAA		
DESIGN MGMT SITE: Worcester		PROD GRP 80 - RapidPod COLOR: -				
DRAWN IN THIRD ANGLE PROJECTION 		MATERIAL: UNLESS SPEC'D $XX \pm .02$ $XXX \pm .005$ $\leq \pm 1^\circ$	CRS GA: N/A OTHER: SEE NOTES	SHEET: 2 OF 4	REV DATE: -	
ALL DIMENSIONS IN INCHES		MATERIAL FINISH: Powder Coat - Variable	SPEC #: -	D	17800036	REV A

RELEASE STATUS
Production

DOOR AND BLANKING PANEL ITEMS SHOWN
IN PHANTOM MUST BE ORDERED SEPARATELY
THEY ARE NOT INCLUDED IN BOM 17800036

Choose one:
PPAPA (CUSTOM LEVEL A)
PPAP3 (LEVEL 3)
PPAPC (CATALOG ITEM)
NA (MFD. PART OR EXEMPT)
PPAP LEVEL: NA

A	-	-	PRODUCTION RELEASE	CO-0268125
REV	REV. DATE	REV'D BY	CURRENT REVISION DESCRIPTION	ECN OR EPR NUMBER




EATON CORPORATION - CONFIDENTIAL AND PROPRIETARY
NOTICE: TO PERSONS RECEIVING THIS DOCUMENT AND/OR TECHNICAL INFORMATION
THIS DOCUMENT, INCLUDING THE DRAWING AND INFORMATION CONTAINED THEREON, IS CONFIDENTIAL AND IS THE
EXCLUSIVE PROPERTY OF EATON CORPORATION, AND IS MERELY ON LOAN AND SUBJECT TO RECALL BY EATON AT ANY
TIME. BY TAKING POSSESSION OF THIS DOCUMENT, THE RECIPIENT ACKNOWLEDGES AND AGREES THAT THIS
DOCUMENT CANNOT BE USED IN ANY MANNER ADVERSE TO THE INTERESTS OF EATON AND THAT NO PORTION OF THIS
DOCUMENT MAY BE COPIED OR OTHERWISE REPRODUCED WITHOUT THE PRIOR WRITTEN CONSENT OF EATON. IN THE
CASE OF CONFLICTING CONTRACTUAL PROVISIONS, THIS NOTICE SHALL GOVERN THE STATUS OF THIS DOCUMENT.
© Eaton Corporation. All Rights Reserved.

THIS DRAWING CONTAINS PROPRIETARY INFORMATION AND IS DAMAGED SUBJECT TO RETURN UPON DEMAND AND UPON THE EXPRESS CONDITION THAT IT WILL NOT BE USED IN ANY WAY DETERIMENTAL TO THE INTEREST OF EATON CORPORATION	CAGE NUMBER: 81824	ORIG EPR: EPR235639 CO-0268125	EATON
DES. BY D.Nelson	06/12/23		
DRWN. BY D.Nelson	09/11/23		
DESIGN MGMT SITE: Worcester	PROD GRP 80 - RapidPod	ASY - RAPIDPOD CTO, 24H 96W 386L, FAA	
COLOR: -	-		
DRAWN IN THIRD ANGLE PROJECTION	TOLERANCE UNLESS SPEC'D XX ± .02 XXX ± .005 ALL DIMENSIONS IN INCHES		MATERIAL: CRS GA: N/A OTHER: SEE NOTES MATERIAL FINISH: Powder Coat - Variable SPEC #: -
REV	3 OF 4		REV DATE: - D 17800036 REV A

RELEASE STATUS	
Production	

GENERAL ARRANGEMENT

- CABINETS, DOORS, BUSWAY, CABLE BASKETS ARE NOT INCLUDED IN THIS SKU.
- REFER TO SHEET 2 & 3 FOR ADDITIONAL INFORMATION

Choose one:
PPAPA (CUSTOM LEVEL A)
PPAP3 (LEVEL 3)
PPAPC (CATALOG ITEM)
NA (MFD. PART OR EXEMPT)
PPAP LEVEL: NA

A	-	-	PRODUCTION RELEASE	CO-0268125
REV	REV. DATE	REV'D BY	CURRENT REVISION DESCRIPTION	ECN OR EPR NUMBER

EATON CORPORATION - CONFIDENTIAL AND PROPRIETARY
NOTICE: TO PERSONS RECEIVING THIS DOCUMENT AND/OR TECHNICAL INFORMATION
THIS DOCUMENT, INCLUDING THE DRAWING AND INFORMATION CONTAINED THEREON, IS CONFIDENTIAL AND IS THE
EXCLUSIVE PROPERTY OF EATON CORPORATION, AND IS MERELY ON LOAN AND SUBJECT TO RECALL BY EATON AT ANY
TIME. BY TAKING POSSESSION OF THIS DOCUMENT, THE RECIPIENT ACKNOWLEDGES AND AGREES THAT THIS
DOCUMENT CANNOT BE USED IN ANY MANNER ADVERSE TO THE INTERESTS OF EATON AND THAT NO PORTION OF THIS
DOCUMENT MAY BE COPIED OR OTHERWISE REPRODUCED WITHOUT THE PRIOR WRITTEN CONSENT OF EATON. IN THE
CASE OF CONFLICTING CONTRACTUAL PROVISIONS, THIS NOTICE SHALL GOVERN THE STATUS OF THIS DOCUMENT.
© Eaton Corporation. All Rights Reserved.

THIS DRAWING CONTAINS PROPRIETARY INFORMATION AND IS DAMAGED SUBJECT TO RETURN UPON DEMAND AND UPON THE EXPRESS CONDITION THAT IT WILL NOT BE USED IN ANY WAY DETERIMENTAL TO THE INTEREST OF EATON CORPORATION	DESIGN MGMT SITE: PROD GRP 80 - RapidPod	CAGE NUMBER: 81824	ORIG EPR: EPR235639 CO-0268125
	DRWN. BY D.Nelson	DES. BY D.Nelson	06/12/23
		DRWN. BY D.Nelson	09/11/23
	Worcester		
DRAWN IN THIRD ANGLE PROJECTION	TOLERANCE UNLESS SPEC'D XX ± .02 XXX ± .005 ≤ ± 1	MATERIAL: CRS GA: N/A OTHER: SEE NOTES	ASY - RAPIDPOD CTO, 24H 96W 386L, FAA
<input type="checkbox"/>	<input type="checkbox"/>	MATERIAL FINISH: Powder Coat - Variable	
<input type="checkbox"/>	<input type="checkbox"/>	SPEC #:	
	ALL DIMENSIONS IN INCHES		D 17800036 REV A

PART 1 - ADDENDUM

1.1 TITLE

.1 This Addendum shall be known as:

Addendum 3
TFM-053-25 – CSF-004-23 Primary Data Centre Replacement

.2 The Date of the Addendum is Thursday, January 15, 2026

1.2 PRECEDENCE

.1 This amendment to the bid documents is effective immediately.

.2 This Addendum shall form an integral part of the original bid documents and is to be read in conjunction therewith.

.3 The Addendum shall take precedence over previously issued bid documents with which it may prove to be at variance.

1.3 GENERAL

.1 Deadline for receipt of tenders has been revised. The new tender closing date is **February 5th, 2026, at 3:00PM (NST)**
New Access code: 2771 539 8656

1.4 PURPOSE

.1 The purpose of the Addendum is to inform bidders of the changes, deletions and additions to be added to the bid documents.

1.5 CHANGES TO DRAWINGS

.1 Not Applicable

1.6 CHANGES TO SPECIFICATION

.1 Not Applicable

1.7 QUESTIONS AND RESPONSES

.1 Another addendum will be issued addressing questions to date.

END OF ADDENDUM

PART 1 - ADDENDUM

1.1 TITLE

.1 This Addendum shall be known as:

Addendum 2
TFM-053-25 – CSF-004-23 Primary Data Centre Replacement

.2 The Date of the Addendum is Friday, January 09, 2026

1.2 PRECEDENCE

.1 This amendment to the bid documents is effective immediately.

.2 This Addendum shall form an integral part of the original bid documents and is to be read in conjunction therewith.

.3 The Addendum shall take precedence over previously issued bid documents with which it may prove to be at variance.

1.3 GENERAL

.1 The General Conditions shall govern all phases of the Work covered by this Addendum.

.2 Acknowledge receipt of this addendum in the Tender and Acceptance form.

1.4 PURPOSE

.1 The purpose of the Addendum is to inform bidders of the changes, deletions and additions to be added to the bid documents.

.2 **Notice of non-mandatory Site Visit:**

Wednesday, January 14th at 12:00 pm.

Location: Core Science Building – Level 1 Pavilion A (The Whale Pavilion, Closest to Clinch Crescent).

1.5 CHANGES TO DRAWINGS

.1 Not Applicable

1.6 CHANGES TO SPECIFICATION

.1 Section 01 11 00 – Summary of Work

.1 Reference: 1.3 Work Covered by Contract Documents
Replace Clause 1.3.5 as follows:

“1.3.5 Eaton has been preselected as the standard of acceptance for all the systems listed under 1.3.4 above. Any alternate proposals must provide an equivalent single source solution for all the above systems. A package comprised of components from several different manufacturers will not be accepted. All requests for alternate package approvals are to be submitted 10 days prior to the Tender closing date and in accordance with Section 01 25 00 - Substitution Procedures.

1.7 QUESTIONS AND RESPONSES

.1 **QUERY:** We would like to request to have Distech Controls added as an Acceptable systems manufacturer in Division 25

RESPONSE: *We have no issue with Distech being included in the acceptable control vendors for the Building systems/EMCS work/tie-ins. The CRAC unit control systems need to be by the system vendor, but will need a control contractor to install and integrate to the BMS.*

.2 **QUERY:** Stipulated Price Contract General Conditions, item 2.28.2 states “The project manager shall submit a resume and cover letter.” Please confirm this is not a mandatory submission requirement for the tender, but is to be submitted after award.

RESPONSE: This will not be mandatory for the tender and can be submitted after the award is made at the request of the Owner.

.3 **QUERY:** Submission Instructions 6.2.1 states “Bids shall be accompanied by a copy of a bid security...” and “Originals to be delivered to Memorial University post tender closing”. Please advise if an electronic bid bond is acceptable or if it is preferred to submit a scan of the hard copy. An electronic bid bond is a verifiable secured document with electronic signatures and seals issued by the Surety company and would be attached as a separate file to the submission email with the tender form.

RESPONSE: Currently, we do not accept electronic bid bonds. Please provide bond as per the current document instructions.

PART 1 - ADDENDUM

1.1 TITLE

.1 This Addendum shall be known as:

Addendum 1
TFM-053-25 – CSF-004-23 Primary Data Centre Replacement

.2 The Date of the Addendum is Thursday, December 18, 2025

1.2 PRECEDENCE

.1 This amendment to the bid documents is effective immediately.

.2 This Addendum shall form an integral part of the original bid documents and is to be read in conjunction therewith.

.3 The Addendum shall take precedence over previously issued bid documents with which it may prove to be at variance.

1.3 GENERAL

.1 The General Conditions shall govern all phases of the Work covered by this Addendum.

.2 Acknowledge receipt of this addendum in the Tender and Acceptance form.

1.4 PURPOSE

.1 The purpose of the Addendum is to inform bidders of the changes, deletions and additions to be added to the bid documents.

1.5 CHANGES TO SPECIFICATION

.1 Section 01 11 00 – Summary of Work

.1 Reference: 1.3 Work Covered by Contract Documents

.1 Add Clause 1.3.8 as follows:

“1.3.8 Bid pricing to be structured with two pricing options for UPS system, PDU's and tap off boxes:

.1 Price A - full system as designed and indicated on drawings.

.2 Price B - minimum base requirement met with option for future growth.

.3 Tap off boxes to be submitted as part of bid pricing structure with two options:

- .1 Price A - full system as designed with 30 tap-off boxes (provides power to 56 PDU's).
- .2 Price B - reduced quantity of tap-off boxes to meet minimum requirements. Provide pricing for 15 tap-off boxes (provides power for 30 PDU's). Power busway to be installed per full system design.
- 4. UPS system pricing to be submitted as part of bid pricing structure with two options:
 - .1 Price A - full UPS system as designed with 30-minute and 90-minute runtimes.
 - .2 Price B - base UPS system with 30-minute run times for both units with unit price to increase run time in 15-minute intervals. UPS cabinets to be provided for full 90-minute capacity.
- 5. Power distribution units (PDU) and associated connection cords to be submitted as part of bid pricing structure with two options:
 - .1 Price A - full system as designed with 56 PDU's in Data Centre 1320A and 4 in Staging Area 1321 for total of 60 PDU's.
 - .2 Price B - reduced quantity of PDUs to meet minimum requirements. Provide pricing for total of 32 PDU's. 30 for Data Centre 1320A and 2 for Staging Area 1321. Quantity of data racks to be installed per full system design.
- .6 Refer to Tender form for further details."

.2 Section 25 01 11 - EMCS: Start-Up, Verification and Commissioning

.1 Reference: 1.7 Commissioning

.1 Revise Clause 1.7.6 to read as follows:

“1.7.6 Load system with project software. Install software for access to EMCS at Owner's Representative designated site on campus for use during commissioning and for their use afterwards. Use web browser software, compatible with Windows 11 with access via Google Chrome (latest edition).”

END OF ADDENDUM